STM32 PWM驱动设计

单片机学习!

目录

文章目录

前言

一、PWM驱动配置步骤

二、代码示例及注意事项

2.1 RCC开启时钟

2.2 配置时基单元

2.3 配置输出比较单元

2.4 配置GPIO

2.5 运行控制

三、PWM周期和占空比计算

总结


前言

        PWM本质是利用面积等效原理来改变波形的有效值。


一、PWM驱动配置步骤

第一步、RCC开启时钟,将需要的TIM外设和GPIO外设的时钟打开。

第二步、配置时基单元,包括时钟源选择的配置。

第三步、配置输出比较单元,包括CCR的值、输出比较模式、极性选择、输出使能这些参数。(在库函数中也是用结构体统一来配置)。

第四步、配置GPIO,把PWM对应的GPIO口初始化为复用推挽输出的配置。

第五步、运行控制,启动计数器就可以输出PWM了。

二、代码示例及注意事项

2.1 RCC开启时钟

        将需要的TIM外设GPIO外设的时钟打开。打开时钟后定时器的基准时钟和整个外设的工作时钟就会同时打开。

代码示例:

	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);//使用APB1的开启时钟函数,因为TIM2是APB1总线的外设。RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);

2.2 配置时基单元

        配置时基单元,包括时钟源选择的配置。

  1. 时基单元的选择时钟源。对于定时中断可选择内部时钟源。
  2. 配置时基单元,包括预分频器、自动重装器、计数模式等,这些参数可用结构体配置。

代码示例:

	TIM_InternalClockConfig(TIM2);TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;TIM_TimeBaseInitStructure.TIM_ClockDivision= TIM_CKD_DIV1;//指定时钟分频TIM_TimeBaseInitStructure.TIM_CounterMode= TIM_CounterMode_Up;//计数器模式TIM_TimeBaseInitStructure.TIM_Period= 100-1;//ARR自动重装器的值TIM_TimeBaseInitStructure.TIM_Prescaler= 720-1;//PSC预分频器的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter= 0;//重复计数器的值TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStructure);

结构体成员:

  • TIM_ClockDivision:指定时钟分频,用于信号经过滤波器时的滤波采样频率。
  • TIM_CounterMode:计数器模式,这里选择向上计数模式TIM_CounterMode_Up。
  • TIM_Period :ARR自动重装器的值。
  • TIM_Prescaler:PSC预分频器的值。
  • TIM_RepetitionCounter:重复计数器的值,只有高级定时器才有,本文初始化通用寄存器,所以值给0。

        时基单元中关键寄存器参数ARR、PSC都有设置,但是这里没有CNT计数器的参数,CNT参数的配置可根据需要在函数 TIM_SetCounter 和函数 TIM_GetCounter 中操作。

        决定定时时间的参数是 TIM_Period 和 TIM_Prescaler 。定时时间可用计数器溢出频率公式计算,定时频率=72M/(PSC+1)/(ARR+1)。

2.3 配置输出比较单元

        配置输出比较单元,包括CCR的值、输出比较模式、极性选择、输出使能这些参数。(在库函数中也是用结构体统一来配置)。

void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);

        这里4个初始化函数对应4个输出比较通道(单元),不同的通道对应的GPIO口也不一样,函数的选择需要根据GPIO口的配置选择。代码示例中使用PA0口,对应第一个输出比较通道,选择TIM_OC1Init函数。

代码示例:

	TIM_OCInitTypeDef TIM_OCInitStructture;TIM_OCStructInit(&TIM_OCInitStructture);TIM_OCInitStructture.TIM_OCMode=TIM_OCMode_PWM1; //设置输出比较的模式。TIM_OCInitStructture.TIM_OCPolarity=TIM_OCPolarity_High; //设置输出比较的极性TIM_OCInitStructture.TIM_OutputState=TIM_OutputState_Enable; //设置输出使能TIM_OCInitStructture.TIM_Pulse=50; //设置CCRTIM_OC1Init(TIM2,&TIM_OCInitStructture);   

        代码示例中的程序并没有给结构体的所有成员赋值,而是用TIM_OCStructInit函数先给结构体成员赋一个初始值,再修改部分的结构体成员。这个结构体变量是局部变量,若不给成员赋初始值,它成员的值就是不确定的,这会导致一些问题。比如当你想把高级定时器当作通用定时器输出PWM时,只配置了通用定时器需要的结构体成员,剩下这些没赋值成员就会导致高级定时器输出PWM出现一些奇怪的问题。

        TIM_OCStructInit函数需要把结构体变量的地址传进去,才能给结构体赋初始值。

1. TIM_OCMode设置输出比较的模式。

        TIM_OCMode输出比较模式参数对应含义:

  • TIM_OCMode_Timing 冻结模式                
  • TIM_OCMode_Active 相等时置有效电平                 
  • TIM_OCMode_Inactive 相等时置无效电平               
  • TIM_OCMode_Toggle 相等时电平翻转                 
  • TIM_OCMode_PWM1 PWM模式1                   
  • TIM_OCMode_PWM2 PWM模式2                   
  • TIM_ForcedAction_Active 强制输出有效电平
  • TIM_ForcedAction_InActive 强制输出无效电平

        注:强制输出两种模式的参数不可以在初始化时使用

2. TIM_OCPolarity设置输出比较的极性。

  • TIM_OCPolarity_High 高级性,是极性不翻转,REF波形直接输出。意思是有效电平是高电平,REF有效时,输出高电平。
  • TIM_OCPolarity_Low  低级性,REF电平取反,意思是有效电平为低电平。

3. TIM_OutputState设置输出使能。

4.TIM_Pulse置CCR。 ARR,PSC,CCR共同决定PWM的周期和占空比
 

        以上配置已经把输出比较通道初始化好了,在TIM2的OC1通道上就可以输出PWM波形了,最终这个波形需要通过GPIO口才可以输出。那TIM2的OC1通道是借用哪个GPIO口呢?下文来选择并配置GPIO。


注:TIM_OC1Init是通道1的初始化函数,若通道1、2、3、4都需要的话可以直接在后面加TIM_OC2Init、TIM_OC3Init、TIM_OC4Init,这样就可以同时使用4个通道来输出4个PWM了。

代码示例:

	TIM_OCInitTypeDef TIM_OCInitStructture;TIM_OCStructInit(&TIM_OCInitStructture);TIM_OCInitStructture.TIM_OCMode=TIM_OCMode_PWM1; //设置输出比较的模式。TIM_OCInitStructture.TIM_OCPolarity=TIM_OCPolarity_High; //设置输出比较的极性TIM_OCInitStructture.TIM_OutputState=TIM_OutputState_Enable; //设置输出使能TIM_OCInitStructture.TIM_Pulse=50; //设置CCRTIM_OC1Init(TIM2,&TIM_OCInitStructture);TIM_OC2Init(TIM2,&TIM_OCInitStructture);TIM_OC3Init(TIM2,&TIM_OCInitStructture);TIM_OC4Init(TIM2,&TIM_OCInitStructture);   

        同一个定时器的不同通道输出的PWM,因为不同通道是共用一个计数器的,所以它们的频率必须是一样的;它们的占空比由各自的CCR决定,所以占空比可以各自设定;他们的相位由于计数器更新,所有PWM同时跳变,所以它们的相位是同步的。

        这就是同一个定时器不同通道输出PWM的特点。如果使用多个设备如电机或者舵机,那使用同一个定时器不同通道的PWM就完全可以。


2.4 配置GPIO

        输出比较通道借用GPIO口可以在引脚定义表中查看:

        默认复用功能这一列就是片上外设的端口和GPIO的连接关系。可以找到 TIM2_CH1_ETR 在 PA0 这一行,这说明 TIM2 的 ETR 引脚和通道1的引脚都是借用了 PA0 这个引脚位置,就是TIM2的引脚复用在了PA0引脚上。所以使用TIM2的OC1通道也就是CH1通道输出PWM,就只能在PA0引脚上输出,而不能任意选择引脚输出。

同理:

  • 使用TIM2_CH2只能在PA1端口输出
  • 使用TIM2_CH3只能在PA2端口输出
  • 使用TIM2_CH4只能在PA3端口输出

表中其他外设也是同理:如使用SPI1_MISO只能在PA6端口输出。虽然引脚与外设都是规定好的,但是还可以根据情况做一次改动。在引脚定义表重定义(重映射)这一列,还可以对应更改。如既要使用 USART2_TX 引脚又要使用 TIM2_CH3 通道,但是它俩都在PA2端口输出,这就冲突了没法同时使用。这时可以在重定义列表里找一下,有 TIM2_CH3 ,那么 TIM2_CH3 就可以从PA2端口输出换为从PB10端口输出。这样就避免了两个外设引脚的冲突。但是如果重映射的列表里找不到,那外设复用的GPIO就不能挪位置。配置重映射需要用AFIO来完成。

        配置GPIO,把PWM对应的GPIO口初始化为复用推挽输出的配置。

代码示例:

	GPIO_InitTypeDef GPIO_InitStruct;GPIO_InitStruct.GPIO_Mode= GPIO_Mode_AF_PP;//这里选择复用推挽输出。GPIO_InitStruct.GPIO_Pin= GPIO_Pin_0;GPIO_InitStruct.GPIO_Speed= GPIO_Speed_50MHz;GPIO_Init(GPIOA,&GPIO_InitStruct);

        这里选择复用推挽输出。
        原因:对于普通的开漏/推挽输出,引脚的控制权是来自于输出数据寄存器的,定时器控制引脚需要使用复用开漏/推挽输出的模式,复用开漏/推挽输出模式中输出数据寄存器将被断开,输出控制权将转移给片上外设,通过引脚定义表可知,这里片上外设引脚连接的就是TIM2的CH1通道。所以只有把GPIO设置为复用推挽输出,引脚的控制权才能交给片上外设,PWM波形才能通过引脚输出。
  

2.5 运行控制

        运行控制:整个模块配置完成后,还需要使能一下计数器,PWM波形就能通过PA0输出了。

代码示例:

    TIM_Cmd(TIM2,ENABLE);

三、PWM周期和占空比计算

计算公式:

  • PWM频率:    Freq = CK_PSC / (PSC + 1) / (ARR + 1)      PWM频率等于计数器更新频率。
  • PWM占空比:    Duty = CCR / (ARR + 1)
  • PWM分辨率:    Reso = 1 / (ARR + 1)

        ARR、PSC、CCR共同决定PWM的周期和占空比

代码示例中产生的是一个频率为1KHHz,占空比为50%,分辨率为1%的PWM波形。

代入公式:

  • 72M/(PSC+1)/(ARR+1)=1000
  • CCR/(ARR+1)=50%
  • 1/(ARR+1)=1%

得出:

  • (ARR+1)=100
  • CCR=50
  • (PSC+1)=720

对应代码中:

  • ARR 给 100-1;
  • PSC 给 720-1;
  • CCR 给 50。

        代码运行时,PWM占空比也可更改,可选择使用TIM_SetCompare1、TIM_SetCompare2、TIM_SetCompare3、TIM_SetCompare4 函数改变CCR寄存器的值来调节PWM占空比。但是PWM的占空比是由ARR、PSC、CCR共同决定。


总结

        以上就是今天要讲的内容,本文仅仅简单介绍了PWM驱动配置。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/246866.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

git安装步骤

安装环境:Windows10 64bit 下载 Git网址 :Git - Downloading Package 版本:Git-2.21.0-64-bit 第一步:双击下载后的Git-2.21.0-64-bit.exe,开始安装 安装开始 第二步:选择安装路径,点击[next]…

2024年美赛数学建模思路 - 案例:退火算法

文章目录 1 退火算法原理1.1 物理背景1.2 背后的数学模型 2 退火算法实现2.1 算法流程2.2算法实现 建模资料 ## 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 退火算法原理 1.1 物理背景 在热力学上&a…

机器学习之pandas库学习

这里写目录标题 pandas介绍pandas核心数据结构SeriesDataFrameDataFrame的创建列访问列添加列删除行访问行添加行删除数据修改 pandas介绍 pandas是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入 了大量库和一些标准的数据模型&#xff…

通过Android Logcat分析firebase崩溃

参考:UnityIL2CPP包Crash闪退利用Android Logcat还原符号表堆栈日志 - 简书 一、安装Android Logcat插件 1、新建空白unity工程,打开PackageManager窗口,菜单栏Window/PackageManager 2、PackageManager中安装Android Logcat日志工具 3、安…

橘子学Mybatis08之Mybatis关于一级缓存的使用和适配器设计模式

前面我们说了mybatis的缓存设计体系,这里我们来正式看一下这玩意到底是咋个用法。 首先我们是知道的,Mybatis中存在两级缓存。分别是一级缓存(会话级),和二级缓存(全局级)。 下面我们就来看看这两级缓存。 一、准备工作 1、准备数据库 在此之…

【docker】linux系统docker的安装及使用

一、docker应用的安装 1.1 安装方式 Docker的自动化安装,即使用提供的一键安装的脚本,进行安装。 官方的一键安装方式:curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun 国内 daocloud一键安装命令:curl -s…

【Web】小白也能做的RWCTF体验赛baby题部分wp

遇到不会的题,怎么办!有的师傅告诉你完了,废了,寄了!只有Z3告诉你,稳辣!稳辣!都稳辣! 这种CVE复现的题型,不可能要求选手从0到1进行0day挖掘,其实…

Django介绍

一、介绍 Django是Python语言中的一个Web框架,Python语言中主流的web框架有Django、Tornado、Flask 等多种 优势:大而全,框架本身集成了ORM、模型绑定、模板引擎、缓存、Session等功能,是一个全能型框架,拥有自己的A…

C#,获取与设置Windows背景图片的源代码

为了满足孩子们个性化桌面的需求。 这里发布获取与设置Windows背景图片的源代码。 1 文本格式 using System; using System.IO; using System.Data; using System.Linq; using System.Text; using System.Drawing; using System.Collections; using System.Collections.Gene…

【MATLAB第94期】#源码分享 | 基于MATLAB的广义加性模型多输入单输出回归预测模型(至少2021a版本)

【MATLAB第94期】#源码分享 | 基于MATLAB的广义加性模型多输入单输出回归预测模型(至少2021a版本) 参考链接: 一、代码展示 %% 清空环境变量 warning off % 关闭报警信息 close all % 关闭开启的图窗 clear …

Linux系统——函数与数组

目录 一、函数 1.函数的定义 2.使用函数 3.定义函数的方法 4.函数举例 4.1判断操作系统 4.2判断ip地址 5.查看函数列表 6.删除函数 7.函数返回值——Return 8.函数的作用范围 9.函数传参 10.函数递归 10.1病毒 10.2阶乘 10.2.1 用for循环 10.2.2函数阶乘 10.…

Unity中的协程

这里写目录标题 前言一、 什么是协程?二、如何声明一个协程三、协程的作用四、协程的优缺点优点 缺点五、 应用示例延迟执行渐变效果 六、总结 前言 在学习unity的过程中会遇到“协程”的概念,听到协程我们脑海里应该会想到它 当然不是一个东西&#xf…

基于物联网设计的水稻田智能灌溉系统(STM32+华为云IOT)

一、项目介绍 随着科技的不断发展和人们生活水平的提高,农业生产也逐渐向智能化、高效化的方向发展。水稻作为我国主要的粮食作物之一,其生长过程中的灌溉管理尤为重要。传统的灌溉方式往往依赖于人工观察和控制,不仅效率低下,而…

硬件知识(1) 手机的长焦镜头

#灵感# 手机总是配备好几个镜头,研究一下 目录 手机常配备的摄像头,及效果举例 长焦的焦距 焦距的定义和示图: IPC的焦距和适用场景: 手机常配备的摄像头,及效果举例 以下是小米某个手机的摄像头介绍&#xff1a…

.NET绿色开源一键自动化下载、安装、激活Office的利器

前言 今天分享一款.NET开源、绿色、安全、无毒的支持一键自动化下载、安装、激活Microsoft Office的利器:LKY_OfficeTools。 工具介绍 一键自动化下载、安装、激活 Microsoft Office 的利器。绿色、开源、安全、无毒。 目前包含的功能: 一键快速下载、…

12.Elasticsearch应用(十二)

Elasticsearch应用(十二) 1.单机ES面临的问题 海量数据存储问题单点故障问题 2.ES集群如何解决上面的问题 海量数据存储解决问题: 将索引库从逻辑上拆分为N个分片(Shard),存储到多个节点单点故障问题&a…

FPGA HDMI IP之DDC(本质I2C协议)通道学习

目的: 使用KingstVIS逻辑分析仪软件分析HDMI的DDC通道传输的SCDC数据(遵循I2C协议),同时学习了解SCDC的寄存器与I2C通信协议。 部分英文缩写: HDMIHigh Definition Multi-media Interface高清多媒体接口DDCDisplay Dat…

一、MongoDB、express的安装和基本使用

数据库【Sqlite3、MongoDB、Mysql】简介&小记 Sqlite3: SQLite3是一个轻量级的数据库系统,它被设计成嵌入式数据库。这意味着它是一个包含在应用程序中的数据库,而不是独立运行的系统服务。适用场景:如小型工具、游戏、本地…

数据结构OJ题——二叉树前序、中序遍历非递归实现(Java版)

二叉树前序、中序遍历非递归实现 前序非递归遍历实现中序非递归遍历实现 前序非递归遍历实现 题目: 二叉树前序遍历非递归实现 总体思路:用非递归的方式模拟递归遍历。 以下图为例: 图示详解: 代码实现: /*** Defi…

打开 IOS开发者模式

前言 需要 1、辅助设备:苹果电脑; 2、辅助应用:Xcode; 3、准备工作:苹果手机 使用数据线连接 苹果电脑; 当前系统版本 IOS 17.3 通过Xcode激活 两指同时点击 Xcode 显示选择,Open Develop…