SharedPreferences卡顿分析

SP的使用及存在的问题

SharedPreferences(以下简称SP)是Android本地存储的一种方式,是以key-value的形式存储在/data/data/项目包名/shared_prefs/sp_name.xml里,SP的使用示例及源码解析参见:Android本地存储之SharedPreferences源码解析。以下是SP的一些结论:

  • SharedPreferences读取xml文件时,会以DOM方式解析(把整个xml文件直接加载到内存中解析),在调用getXXX()方法时取到的是内存中的数据,方法执行时会有个锁来阻塞,目的是等待文件加载完毕,没加载完成之前会wait()
  • SP第一次初始化到读取到数据存在一定延迟,因为需要到文件中读取数据,因此可能会对UI线程流畅度造成一定影响,严重情况下会产生ANR
  • SharedPreferences写文件时,如果调用的commit(),会将数据同步写入内存中,内存数据更新,再同步写入磁盘中; 如果调用的apply(),会将数据同步写入内存中,内存数据更新,然后异步写人磁盘,也就是说可能写磁盘操作还没有完成就直接返回了。在UI线程中建议使用apply(),因为同步写磁盘,当文件较大时,commit()会等到写磁盘完成再返回,可能会有ANR问题。
  • 写文件时即使用的是apply()方法,依然有可能会造成ANR问题,这是为什么呢?先看下apply()的流程。
SharedPreferencesImpl#apply()流程分析(基于8.0以上版本)
SharedPreferencesImpl$EditorImpl
@Override
public void apply() {final long startTime = System.currentTimeMillis();// 写入内存(更新修改的字段)final MemoryCommitResult mcr = commitToMemory();// 使用CountDownLatch实现等待写入文件操作完成final Runnable awaitCommit = new Runnable() {@Overridepublic void run() {try {// writtenToDiskLatch初始化为CountDownLatch(1)mcr.writtenToDiskLatch.await();} catch (InterruptedException ignored) {}}};// 将awaitCommit添加到等待队列中,后续Activity/Servicede的onStop()会执行该Runnable等待文件写入完成QueuedWork.addFinisher(awaitCommit);Runnable postWriteRunnable = new Runnable() {@Overridepublic void run() {awaitCommit.run();QueuedWork.removeFinisher(awaitCommit);}};// 将待写入文件的集合添加到工作任务队列中SharedPreferencesImpl.this.enqueueDiskWrite(mcr, postWriteRunnable);notifyListeners(mcr);
}

QueuedWork.addFinisher(awaitCommit)awaitCommit加入到等待队列中,awaitCommit在执行时利用CountDownLatch机制可以实现对当前线程的阻塞效果,后续ActivityonStop()中会将这里的awaitCommit取出来执行,即UI线程会阻塞等待sp文件写入磁盘,写入操作是通过SharedPreferencesImpl#enqueueDiskWrite()完成的,写入成功后会通过writtenToDiskLatch.countDown()释放awaitCommit中的锁,如果写入操作比较耗时,就会造成ANR问题。

SharedPreferencesImpl.java

private void enqueueDiskWrite(final MemoryCommitResult mcr,final Runnable postWriteRunnable) {final boolean isFromSyncCommit = (postWriteRunnable == null);final Runnable writeToDiskRunnable = new Runnable() {@Overridepublic void run() {synchronized (mWritingToDiskLock) {// 写入硬盘操作writeToFile(mcr, isFromSyncCommit);}synchronized (mLock) {mDiskWritesInFlight--;}if (postWriteRunnable != null) {postWriteRunnable.run();}}};// commit()场景下会在当前线程进行写入硬盘操作if (isFromSyncCommit) {boolean wasEmpty = false;synchronized (mLock) {wasEmpty = mDiskWritesInFlight == 1;}if (wasEmpty) {writeToDiskRunnable.run();return;}}// 添加到写入硬盘的工作队列QueuedWork.queue(writeToDiskRunnable, !isFromSyncCommit);
}

QueuedWork.java

public static void queue(Runnable work, boolean shouldDelay) {Handler handler = getHandler();synchronized (sLock) {sWork.add(work);if (shouldDelay && sCanDelay) {handler.sendEmptyMessageDelayed(QueuedWorkHandler.MSG_RUN, DELAY);} else {handler.sendEmptyMessage(QueuedWorkHandler.MSG_RUN);}}
}// 构造一个Handler并传入HandlerThread的Looper,即Handler会在工作线程中处理消息
private static Handler getHandler() {synchronized (sLock) {if (sHandler == null) {HandlerThread handlerThread = new HandlerThread("queued-work-looper",Process.THREAD_PRIORITY_FOREGROUND);handlerThread.start();sHandler = new QueuedWorkHandler(handlerThread.getLooper());}return sHandler;}
}private static class QueuedWorkHandler extends Handler {static final int MSG_RUN = 1;QueuedWorkHandler(Looper looper) {super(looper);}public void handleMessage(Message msg) {if (msg.what == MSG_RUN) {// (1) 消息队列的工作线程中执行processPendingWork();}}
}// 该方法存在两种执行路径: (1)在消息队列对应的工作线程中执行、(2)当前线程执行(执行前会将任务队列克隆并清空)
private static void processPendingWork() {synchronized (sProcessingWork) {LinkedList<Runnable> work;synchronized (sLock) {// a. 拷贝工作队列中的任务集合,然后将原任务集合清理,当(2)场景主线程执行到这里时因为集合没有任务直接跳过,进入等待写入磁盘任务完成work = (LinkedList<Runnable>) sWork.clone();sWork.clear();// b. 移除队列中的所有消息,下面立即处理getHandler().removeMessages(QueuedWorkHandler.MSG_RUN);}if (work.size() > 0) {// 取出Runnable并执行for (Runnable w : work) {w.run();}}}
}

QueuedWork.waitToFinish

Activity的onStop()Service的onDestroy()执行时,都会调用到QueuedWork.waitToFinish()方法:

ActivityThread.java

private void handleStopService(IBinder token) {Service s = mServices.remove(token);if (s != null) {try {if (localLOGV) Slog.v(TAG, "Destroying service " + s);s.onDestroy();s.detachAndCleanUp();// 看这里QueuedWork.waitToFinish();//......} catch (Exception e) {}}
}@Override
public void handleStopActivity(IBinder token, int configChanges,PendingTransactionActions pendingActions, boolean finalStateRequest, String reason) {final ActivityClientRecord r = mActivities.get(token);r.activity.mConfigChangeFlags |= configChanges;final StopInfo stopInfo = new StopInfo();performStopActivityInner(r, stopInfo, true /* saveState */, finalStateRequest,reason);// 大于API11的时候执行if (!r.isPreHoneycomb()) {// 看这里QueuedWork.waitToFinish();}//......
}

Activity的onStop()Service中的onDestroy()都是间接在ActivityThread中的handleStopService()、handleStopActivity()执行的,这两个方法里都会执行到QueuedWork.waitToFinish()

public static void waitToFinish() {long startTime = System.currentTimeMillis();boolean hadMessages = false;Handler handler = getHandler();synchronized (sLock) {if (handler.hasMessages(QueuedWorkHandler.MSG_RUN)) {// Delayed work will be processed at processPendingWork() belowhandler.removeMessages(QueuedWorkHandler.MSG_RUN);}// We should not delay any work as this might delay the finisherssCanDelay = false;}StrictMode.ThreadPolicy oldPolicy = StrictMode.allowThreadDiskWrites();try {// (2) 把任务取出来,直接在当前线程处理文件操作 8.0之后的逻辑(文件操作容易导致anr),因为之前清理任务集合,这里可能会立即执行完成进入下面执行等待状态processPendingWork();} finally {StrictMode.setThreadPolicy(oldPolicy);}try {while (true) {Runnable finisher;synchronized (sLock) {// 重点finisher = sFinishers.poll();}if (finisher == null) {break;}finisher.run();}} finally {sCanDelay = true;}}
}

这里的sFinishers中取的Runnable就是在写文件之前通过QueuedWork.addFinisher(awaitCommit)添加的,当取出awaitCommit执行时即会阻塞当前线程,如果apply()中写入磁盘时间过长导致awaitCommit的锁没有及时释放,UI线程就会因为长时间被阻塞得不到执行而出现ANR了。

总结如下图:

图片来自:今日头条 ANR 优化实践系列 - 告别 SharedPreference 等待,所以结论是:使用apply()依然有可能会造成ANR问题。

8.0以下 写文件流程

public void apply() {final MemoryCommitResult mcr = commitToMemory();// 这里的操作是为了CountDownLatch实现等待效果final Runnable awaitCommit = new Runnable() {public void run() {try {mcr.writtenToDiskLatch.await();} catch (InterruptedException ignored) {}}};QueuedWork.add(awaitCommit);Runnable postWriteRunnable = new Runnable() {public void run() {awaitCommit.run();QueuedWork.remove(awaitCommit);}};SharedPreferencesImpl.this.enqueueDiskWrite(mcr, postWriteRunnable);
}

QueuedWork.waitToFinish()

public static void waitToFinish() {Runnable toFinish;while ((toFinish = sPendingWorkFinishers.poll()) != null) {toFinish.run();}
}

8.0以下的流程相对更简单一些,但核心流程是一样的,当在UI线程中调用到QueuedWork.waitToFinish()时,如果写入磁盘的操作还未完成且耗时比较长,都会引起UI线程ANR

如何优化

Jetpack DataStore替代

Jetpack DataStore 是一种改进的新数据存储解决方案,允许使用协议缓冲区存储键值对或类型化对象。DataStore 以异步、一致的事务方式存储数据,克服了 SharedPreferences(以下统称为SP)的一些缺点DataStore基于Kotlin协程和Flow实现,并且可以对SP数据进行迁移,旨在取代SP

DataStore提供了两种不同的实现:Preferences DataStoreProto DataStore,其中Preferences DataStore用于存储键值对Proto DataStore用于存储类型化对象DataStore更详细的介绍参见:Android Jetpack系列之DataStore

MMKV替代

MMKV 是基于 mmap 内存映射的key-value 组件,底层序列化/反序列化使用 protobuf实现,性能高,稳定性强。从 2015 年中至今在微信上使用,其性能和稳定性经过了时间的验证。近期也已移植到 Android / macOS / Win32 / POSIX 平台,一并开源。

注:mmap 内存映射,可以提供一段可供随时写入的内存块,App 只管往里面写数据,由操作系统负责将内存回写到文件,不必担心 crash 导致数据丢失。

MMKV地址:https://github.com/tencent/mmkv

apply()使用优化

主要是优化UI线程中执行QueuedWork.waitToFinish(),当队列执行poll()时,通过反射修改poll()的返回值,将其设为null,这样UI线程会继续往下执行而不会原地阻塞等待了。示例如下(注意8.0以上8.0以下处理不一样)

object SPHook {fun optimizeSpTask() {if (Build.VERSION.SDK_INT < 26) {reflectSPendingWorkFinishers()} else {reflectSFinishers()}}/*** 8.0以上 Reflect finishers**/private fun reflectSFinishers() {try {val clz = Class.forName("android.app.QueuedWork")val field = clz.getDeclaredField("sFinishers")field.isAccessible = trueval queue = field.get(clz) as? LinkedList<Runnable>if (queue != null) {val linkedListProxy = LinkedListProxy(queue)field.set(queue, linkedListProxy)log("hook success")}} catch (ex: Exception) {log("hook error:${ex}")}}/*** 8.0以下 Reflect pending work finishers*/private fun reflectSPendingWorkFinishers() {try {val clz = Class.forName("android.app.QueuedWork")val field = clz.getDeclaredField("sPendingWorkFinishers")field.isAccessible = trueval queue = field.get(clz) as? ConcurrentLinkedQueue<Runnable>if (queue != null) {val proxy = ConcurrentLinkedQueueProxy(queue)field.set(queue, proxy)log("hook success")}} catch (ex: Exception) {log("hook error:${ex}")}}/*** 在8.0以上apply()中QueuedWork.addFinisher(awaitCommit), 需要代理的是LinkedList,如下:* # private static final LinkedList<Runnable> sFinishers = new LinkedList<>()*/private class LinkedListProxy(private val sFinishers: LinkedList<Runnable>) :LinkedList<Runnable>() {override fun add(element: Runnable): Boolean {return sFinishers.add(element)}override fun remove(element: Runnable): Boolean {return sFinishers.remove(element)}override fun isEmpty(): Boolean = true/*** 代理的poll()方法,永远返回空,这样UI线程就可以避免被阻塞,继续执行了*/override fun poll(): Runnable? {return null}}/*** 在8.0以下代理* // The set of Runnables that will finish or wait on any async activities started by the application.* private static final ConcurrentLinkedQueue<Runnable> sPendingWorkFinishers = new ConcurrentLinkedQueue<Runnable>();*/private class ConcurrentLinkedQueueProxy(private val sPendingWorkFinishers: ConcurrentLinkedQueue<Runnable>) :ConcurrentLinkedQueue<Runnable>() {override fun add(element: Runnable?): Boolean {return sPendingWorkFinishers.add(element)}override fun remove(element: Runnable?): Boolean {return sPendingWorkFinishers.remove(element)}override fun isEmpty(): Boolean = true/*** 代理的poll()方法,永远返回空,这样UI线程就可以避免被阻塞,继续执行了*/override fun poll(): Runnable? {return null}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/246867.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32 PWM驱动设计

单片机学习&#xff01; 目录 文章目录 前言 一、PWM驱动配置步骤 二、代码示例及注意事项 2.1 RCC开启时钟 2.2 配置时基单元 2.3 配置输出比较单元 2.4 配置GPIO 2.5 运行控制 三、PWM周期和占空比计算 总结 前言 PWM本质是利用面积等效原理来改变波形的有效值。 一、PWM驱动…

git安装步骤

安装环境&#xff1a;Windows10 64bit 下载 Git网址 &#xff1a;Git - Downloading Package 版本&#xff1a;Git-2.21.0-64-bit 第一步&#xff1a;双击下载后的Git-2.21.0-64-bit.exe&#xff0c;开始安装 安装开始 第二步&#xff1a;选择安装路径&#xff0c;点击[next]…

2024年美赛数学建模思路 - 案例:退火算法

文章目录 1 退火算法原理1.1 物理背景1.2 背后的数学模型 2 退火算法实现2.1 算法流程2.2算法实现 建模资料 ## 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 退火算法原理 1.1 物理背景 在热力学上&a…

机器学习之pandas库学习

这里写目录标题 pandas介绍pandas核心数据结构SeriesDataFrameDataFrame的创建列访问列添加列删除行访问行添加行删除数据修改 pandas介绍 pandas是基于NumPy 的一种工具&#xff0c;该工具是为了解决数据分析任务而创建的。Pandas 纳入 了大量库和一些标准的数据模型&#xff…

通过Android Logcat分析firebase崩溃

参考&#xff1a;UnityIL2CPP包Crash闪退利用Android Logcat还原符号表堆栈日志 - 简书 一、安装Android Logcat插件 1、新建空白unity工程&#xff0c;打开PackageManager窗口&#xff0c;菜单栏Window/PackageManager 2、PackageManager中安装Android Logcat日志工具 3、安…

橘子学Mybatis08之Mybatis关于一级缓存的使用和适配器设计模式

前面我们说了mybatis的缓存设计体系&#xff0c;这里我们来正式看一下这玩意到底是咋个用法。 首先我们是知道的&#xff0c;Mybatis中存在两级缓存。分别是一级缓存(会话级)&#xff0c;和二级缓存(全局级)。 下面我们就来看看这两级缓存。 一、准备工作 1、准备数据库 在此之…

【docker】linux系统docker的安装及使用

一、docker应用的安装 1.1 安装方式 Docker的自动化安装&#xff0c;即使用提供的一键安装的脚本&#xff0c;进行安装。 官方的一键安装方式&#xff1a;curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun 国内 daocloud一键安装命令&#xff1a;curl -s…

【Web】小白也能做的RWCTF体验赛baby题部分wp

遇到不会的题&#xff0c;怎么办&#xff01;有的师傅告诉你完了&#xff0c;废了&#xff0c;寄了&#xff01;只有Z3告诉你&#xff0c;稳辣&#xff01;稳辣&#xff01;都稳辣&#xff01; 这种CVE复现的题型&#xff0c;不可能要求选手从0到1进行0day挖掘&#xff0c;其实…

Django介绍

一、介绍 Django是Python语言中的一个Web框架&#xff0c;Python语言中主流的web框架有Django、Tornado、Flask 等多种 优势&#xff1a;大而全&#xff0c;框架本身集成了ORM、模型绑定、模板引擎、缓存、Session等功能&#xff0c;是一个全能型框架&#xff0c;拥有自己的A…

C#,获取与设置Windows背景图片的源代码

为了满足孩子们个性化桌面的需求。 这里发布获取与设置Windows背景图片的源代码。 1 文本格式 using System; using System.IO; using System.Data; using System.Linq; using System.Text; using System.Drawing; using System.Collections; using System.Collections.Gene…

【MATLAB第94期】#源码分享 | 基于MATLAB的广义加性模型多输入单输出回归预测模型(至少2021a版本)

【MATLAB第94期】#源码分享 | 基于MATLAB的广义加性模型多输入单输出回归预测模型&#xff08;至少2021a版本&#xff09; 参考链接&#xff1a; 一、代码展示 %% 清空环境变量 warning off % 关闭报警信息 close all % 关闭开启的图窗 clear …

Linux系统——函数与数组

目录 一、函数 1.函数的定义 2.使用函数 3.定义函数的方法 4.函数举例 4.1判断操作系统 4.2判断ip地址 5.查看函数列表 6.删除函数 7.函数返回值——Return 8.函数的作用范围 9.函数传参 10.函数递归 10.1病毒 10.2阶乘 10.2.1 用for循环 10.2.2函数阶乘 10.…

Unity中的协程

这里写目录标题 前言一、 什么是协程&#xff1f;二、如何声明一个协程三、协程的作用四、协程的优缺点优点 缺点五、 应用示例延迟执行渐变效果 六、总结 前言 在学习unity的过程中会遇到“协程”的概念&#xff0c;听到协程我们脑海里应该会想到它 当然不是一个东西&#xf…

基于物联网设计的水稻田智能灌溉系统(STM32+华为云IOT)

一、项目介绍 随着科技的不断发展和人们生活水平的提高&#xff0c;农业生产也逐渐向智能化、高效化的方向发展。水稻作为我国主要的粮食作物之一&#xff0c;其生长过程中的灌溉管理尤为重要。传统的灌溉方式往往依赖于人工观察和控制&#xff0c;不仅效率低下&#xff0c;而…

硬件知识(1) 手机的长焦镜头

#灵感# 手机总是配备好几个镜头&#xff0c;研究一下 目录 手机常配备的摄像头&#xff0c;及效果举例 长焦的焦距 焦距的定义和示图&#xff1a; IPC的焦距和适用场景&#xff1a; 手机常配备的摄像头&#xff0c;及效果举例 以下是小米某个手机的摄像头介绍&#xff1a…

.NET绿色开源一键自动化下载、安装、激活Office的利器

前言 今天分享一款.NET开源、绿色、安全、无毒的支持一键自动化下载、安装、激活Microsoft Office的利器&#xff1a;LKY_OfficeTools。 工具介绍 一键自动化下载、安装、激活 Microsoft Office 的利器。绿色、开源、安全、无毒。 目前包含的功能&#xff1a; 一键快速下载、…

12.Elasticsearch应用(十二)

Elasticsearch应用&#xff08;十二&#xff09; 1.单机ES面临的问题 海量数据存储问题单点故障问题 2.ES集群如何解决上面的问题 海量数据存储解决问题&#xff1a; 将索引库从逻辑上拆分为N个分片&#xff08;Shard&#xff09;&#xff0c;存储到多个节点单点故障问题&a…

FPGA HDMI IP之DDC(本质I2C协议)通道学习

目的&#xff1a; 使用KingstVIS逻辑分析仪软件分析HDMI的DDC通道传输的SCDC数据&#xff08;遵循I2C协议&#xff09;&#xff0c;同时学习了解SCDC的寄存器与I2C通信协议。 部分英文缩写&#xff1a; HDMIHigh Definition Multi-media Interface高清多媒体接口DDCDisplay Dat…

一、MongoDB、express的安装和基本使用

数据库【Sqlite3、MongoDB、Mysql】简介&小记 Sqlite3&#xff1a; SQLite3是一个轻量级的数据库系统&#xff0c;它被设计成嵌入式数据库。这意味着它是一个包含在应用程序中的数据库&#xff0c;而不是独立运行的系统服务。适用场景&#xff1a;如小型工具、游戏、本地…

数据结构OJ题——二叉树前序、中序遍历非递归实现(Java版)

二叉树前序、中序遍历非递归实现 前序非递归遍历实现中序非递归遍历实现 前序非递归遍历实现 题目&#xff1a; 二叉树前序遍历非递归实现 总体思路&#xff1a;用非递归的方式模拟递归遍历。 以下图为例&#xff1a; 图示详解&#xff1a; 代码实现&#xff1a; /*** Defi…