【算法专题】动态规划综合篇

动态规划7.0

    • 1. 最长公共子序列
    • 2. 不相交的线
    • 3. 不同的子序列
    • 4. 通配符匹配
    • 5. 正则表达式匹配
    • 6. 交错字符串
    • 7. 两个字符串的最小ASCII删除和
    • 8. 最长重复子数组

1. 最长公共子序列

题目链接 -> Leetcode -1143.最长公共子序列

Leetcode -1143.最长公共子序列

题目:给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:
输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace” ,它的长度为 3 。

示例 2:
输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc” ,它的长度为 3 。

示例 3:
输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0 。

提示:

  • 1 <= text1.length, text2.length <= 1000
  • text1 和 text2 仅由小写英文字符组成

思路:

  1. 状态表示:对于两个数组的动态规划,我们的定义状态表示的经验就是:选取第一个数组 [0, i] 区间以及第二个数组 [0, j] 区间作为研究对象;结合题目要求,定义状态表示。在本题中,我们根据定义状态表示为:
  • dp[i][j] 表示: s1 的 [0, i] 区间以及 s2 的 [0, j] 区间内的所有的子序列中,最长公共子序列的长度;
  1. 状态转移方程:分析状态转移方程的经验就是根据「最后一个位置」的状况,分情况讨论。对于 dp[i][j] ,我们可以根据 s1[i] 与 s2[j] 的字符分情况讨论:
  • 两个字符相同, s1[i] = s2[j] :那么最长公共子序列就在 s1 的 [0, i - 1] 以及 s2 的 [0, j - 1] 区间上找到一个最长的,然后再加上 s1[i] 即可。因此 dp[i][j] = dp[i - 1][j - 1] + 1 ;
  • 两个字符不相同, s1[i] != s2[j] :那么最长公共子序列一定不会同时以 s1[i] 和 s2[j] 结尾。那么我们找最长公共子序列时,有下面三种策略:
    i. 去 s1 的 [0, i - 1] 以及 s2 的 [0, j] 区间内找:此时最大长度为 dp[i - 1][j] ;
    ii. 去 s1 的 [0, i] 以及 s2 的 [0, j - 1] 区间内找:此时最大长度为 dp[i][j - 1] ;
    iii. 去 s1 的 [0, i - 1] 以及 s2 的 [0, j - 1] 区间内找:此时最大长度为 dp[i - 1][j - 1] 。

我们要三者的最大值即可。但是我们细细观察会发现,第三种包含在第一种和第二种情况里面,但是我们求的是最大值,并不影响最终结果。因此只需求前两种情况下的最大值即可;

综上,状态转移方程为:

  • if(s1[i] == s2[j]) dp[i][j] = dp[i - 1][j - 1] + 1 ;
  • if(s1[i] != s2[j]) dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
  1. 返回值:根据「状态表示」得:返回 dp[m][n];

代码如下:

		class Solution {public:int longestCommonSubsequence(string text1, string text2) {int m = text1.size(), n = text2.size();// dp[i][j] 表示 test1中 0~i 和 test2中 0~j 字符串中最长公共子序列的长度  vector<vector<int>> dp(m + 1, vector<int>(n + 1));// 因为dp多开了一个空间,所以使字符串统一向后移动一个单位,使下标一一对应text1 = ' ' + text1, text2 = ' ' + text2;for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){// 最后两个字符相同的话,一定是公共子序列if(text1[i] == text2[j]) dp[i][j] = dp[i - 1][j - 1] + 1;// 否则取test1中0~i-1 的字符串和test2中 0~j 的字符串 和 test1中 0~i 的字符串和test2中 0~j-1 的字符串的dp表中的较大值else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}return dp[m][n];}};

2. 不相交的线

题目链接 -> Leetcode -1035.不相交的线

Leetcode -1035.不相交的线

题目:在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足满足:

nums1[i] == nums2[j]
且绘制的直线不与任何其他连线(非水平线)相交。
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

示例 1:
输入:nums1 = [1, 4, 2], nums2 = [1, 2, 4]
输出:2
在这里插入图片描述

解释:可以画出两条不交叉的线,如上图所示。
但无法画出第三条不相交的直线,因为从 nums1[1] = 4 到 nums2[2] = 4 的直线将与从 nums1[2] = 2 到 nums2[1] = 2 的直线相交。

示例 2:
输入:nums1 = [2, 5, 1, 2, 5], nums2 = [10, 5, 2, 1, 5, 2]
输出:3

示例 3:
输入:nums1 = [1, 3, 7, 1, 7, 5], nums2 = [1, 9, 2, 5, 1]
输出:2

提示:

  • 1 <= nums1.length, nums2.length <= 500
  • 1 <= nums1[i], nums2[j] <= 2000

思路:如果要保证两条直线不相交,那么我们「下一个连线」必须在「上一个连线」对应的两个元素的「后面」寻找相同的元素。这就转化成「最长公共子序列」的模型了。那就是在这两个数组中寻找「最长的公共子序列」。

代码如下:

		class Solution {public:// 与最长公共子序列同类型int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {int m = nums1.size(), n = nums2.size();vector<vector<int>> dp(m + 1, vector<int>(n + 1));for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){if(nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}return dp[m][n];}};

3. 不同的子序列

题目链接 -> Leetcode -115.不同的子序列

Leetcode -115.不同的子序列

题目:给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 10^9 + 7 取模。

示例 1:
输入:s = “rabbbit”, t = “rabbit”
输出:3
解释:
如下所示, 有 3 种可以从 s 中得到 “rabbit” 的方案。
rabbbit
rabbbit
rabbbit

示例 2:
输入:s = “babgbag”, t = “bag”
输出:5
解释:
如下所示, 有 5 种可以从 s 中得到 “bag” 的方案。
babgbag
babgbag
babgbag
babgbag
babgbag

提示:

  • 1 <= s.length, t.length <= 1000
  • s 和 t 由英文字母组成

思路:

  1. 状态表示:对于两个字符串之间的 dp 问题,我们一般的思考方式如下:
  • 选取第一个字符串的 [0, i] 区间以及第二个字符串的 [0, j] 区间当成研究对象,结合题目的要求来定义「状态表示」;
  • 然后根据两个区间上「最后一个位置的字符」,来进行「分类讨论」,从而确定「状态转移方程」。

我们可以根据上面的策略,解决大部分关于两个字符串之间的 dp 问题。

  • dp[i][j] 表示:在字符串 s 的 [0, j] 区间内的所有子序列中,有多少个 t 字符串 [0, i] 区间内的子串;
  1. 状态转移方程:根据「最后一个位置」的元素,结合题目要求,分情况讨论:
  • 当 t[i] == s[j] 的时候,此时的子序列有两种选择:
    i. 一种选择是:子序列选择 s[j] 作为结尾,此时相当于在状态 dp[i - 1][j - 1]
    中的所有符合要求的子序列的后面,再加上一个字符 s[j] ,此时 dp[i][j] = dp[i - 1][j - 1] ;
    ii. 另一种选择是:不选择 s[j] 作为结尾;此时相当于选择了状态 dp[i][j - 1] 中所有符合要求的子序列。我们也可以理解为继承了上个状态里面的求得的子序列。此时 dp[i][j] = dp[i][j - 1] ;

两种情况加起来,就是 t[i] == s[j] 时的结果。

  • 当 t[i] != s[j] 的时候,此时的子序列只能从 dp[i][j - 1] 中选择所有符合要求的子序列。只能继承上个状态里面求得的子序列,dp[i][j] = dp[i][j - 1] ;

综上所述,状态转移方程为:

  • 所有情况下都可以继承上一次的结果: dp[i][j] = dp[i][j - 1] ;
  • 当 t[i] == s[j] 时,可以多选择一种情况: dp[i][j] += dp[i - 1][j - 1]
  1. 返回值:根据「状态表示」,返回 dp[m][n] 的值;

代码如下:

		class Solution {public:int numDistinct(string s, string t){int m = t.size(), n = s.size();// dp[i][j] 表示,s字符串[0,j]区间内所有的子序列中,有多少个t字符串[0,i]区间内的子串// 多开一行一列,引入空串vector<vector<double>> dp(m + 1, vector<double>(n + 1));// 当 s 为空串时,t 中怎么也会有一个空串,所以将第一行全部初始化为1for (int j = 0; j <= n; j++) dp[0][j] = 1;s = " " + s, t = " " + t; // 使下标一一对应for (int i = 1; i <= m; i++){for (int j = 1; j <= n; j++){// 不算当前 s[j] ,统计s中 0~j-1 组成的字符串中有多少能组成 t 中0~i的子序列dp[i][j] += dp[i][j - 1];// 算当前 s[j],当 s[j] == t[i] 时再算上前面的子序列累加起来if (s[j] == t[i]) dp[i][j] += dp[i - 1][j - 1];}}return dp[m][n];}};

4. 通配符匹配

题目链接 -> Leetcode -44.通配符匹配

Leetcode -44.通配符匹配

题目:给你一个输入字符串(s) 和一个字符模式( p),请你实现一个支持 ‘?’ 和 ’ * ’ 匹配规则的通配符匹配:
‘?’ 可以匹配任何单个字符。
’ * ’ 可以匹配任意字符序列(包括空字符序列)。
判定匹配成功的充要条件是:字符模式必须能够 完全匹配 输入字符串(而不是部分匹配)。

示例 1:
输入:s = “aa”, p = “a”
输出:false
解释:“a” 无法匹配 “aa” 整个字符串。

示例 2:
输入:s = “aa”, p = “*”
输出:true
解释:’ * ’ 可以匹配任意字符串。

示例 3:
输入:s = “cb”, p = “?a”
输出:false
解释:‘?’ 可以匹配 ‘c’, 但第二个 ‘a’ 无法匹配 ‘b’。

提示:

  • 0 <= s.length, p.length <= 2000
  • s 仅由小写英文字母组成
  • p 仅由小写英文字母、‘?’ 或 ‘*’ 组成

思路:

  1. 状态表示:对于两个字符串之间的 dp 问题,我们一般的思考方式如下:
  • 选取第一个字符串的 [0, i] 区间以及第二个字符串的 [0, j] 区间当成研究对象,结合题目的要求来定义「状态表示」;
  • 然后根据两个区间上「最后一个位置的字符」,来进行「分类讨论」,从而确定「状态转移方程」。

因此,我们定义状态表示为:dp[i][j] 表示: p 字符串 [0, j] 区间内的子串能否匹配字符串 s 的 [0, i] 区间内的子串。

  1. 状态转移方程:
    我们根据最后一个位置的元素,结合题目要求,分情况讨论:
  • 当 s[i] == p[j] 或 p[j] == ‘?’ 的时候,此时两个字符串匹配上了当前的一个字符,只能从 dp[i - 1][j - 1] 中看当前字符前面的两个子串是否匹配。只能继承上个状态中的匹配结果, dp[i][j] = dp[i][j - 1] ;
  • 当 p[j] == ‘*’ 的时候,此时匹配策略有两种选择:
    i. 一种选择是: * 匹配空字符串,此时相当于它什么都没有匹配,直接继承状态 dp[i][j - 1] ,此时 dp[i][j] = dp[i][j - 1] ;
    ii. 另⼀种选择是: * 向前匹配 1 ~ n 个字符,直至匹配上整个 s1 串。此时相当于从 dp[k][j - 1] (0 <= k <= i) 中所有匹配情况中,选择性继承可以成功的情况。此时 dp[i][j] = dp[k][j - 1] (0 <= k <= i) ;
  • 当 p[j] 不是特殊字符,且不与 s[i] 相等时,无法匹配。

三种情况加起来,就是所有可能的匹配结果。

即下图分析:

在这里插入图片描述
综上所述,状态转移方程为:

  • 当 s[i] == p[j] 或 p[j] == ‘?’ 时: dp[i][j] = dp[i][j - 1] ;
  • 当 p[j] == ‘*’ 时,有多种情况需要讨论: dp[i][j] = dp[k][j - 1] (0 <= k <= i) ;

优化:当我们发现,计算一个状态的时候,需要一个循环才能搞定的时候,我们要想到去优化。优化的方向就是用一个或者两个状态来表示这一堆的状态。通常就是把它写下来,然后用数学的方式做一下等价替换:

当 p[j] == ‘*’ 时,状态转移方程为:
dp[i][j] = dp[i][j - 1] || dp[i - 1][j - 1] || dp[i - 2][j - 1] || …

我们发现 i 是有规律的减小的,因此我们去看看 dp[i - 1][j] :
dp[i - 1][j] = dp[i - 1][j - 1] || dp[i - 2][j - 1] || dp[i - 3][j - 1] …

我们发现, dp[i][j] 的状态转移方程里面除了第一项以外,其余的都可以用 dp[i - 1][j] 替代。因此,我们优化我们的状态转移方程为: dp[i][j] = dp[i - 1][j] || dp[i][j - 1].

  1. 初始化:

由于 dp 数组的值设置为是否匹配,为了不与答案值混淆,我们需要将整个数组初始化为 false;由于需要用到前一行和前一列的状态,我们初始化第一行、第一列即可;

  • dp[0][0] 表示两个空串能否匹配,答案是显然的, 初始化为 true.
  • 第一行表示 s 是一个空串, p 串和空串只有一种匹配可能,即 p 串表示为 *** ,此时也相当于空串匹配上空串。所以,我们可以遍历 p 串,把所有前导为 “*” 的 p 子串和空串的 dp 值设为 true.
  • 第一列表示 p 是一个空串,不可能匹配上 s 串,跟随数组初始化即可.
  1. 返回值:根据状态表示,返回 dp[m][n] 的值.

代码如下:

		class Solution {public:bool isMatch(string s, string p) {int m = s.size(), n = p.size();s = ' ' + s, p = ' ' + p;// dp[i][j] 表示: p 字符串 [0, j] 区间内的⼦串能否匹配字符串 s 的 [0, i] 区间内的⼦串。vector<vector<bool>> dp(m + 1, vector<bool>(n + 1));// 完成初始化// 多开一行一列,第一行相当于s为空串,第一列相当于p为空串dp[0][0] = true; // 大家都是空串,可以匹配for(int i = 1; i <= n; i++) if(p[i] == '*') dp[0][i] = true; // 在第一行中初始化中,只要 p 中出现不是'*'就不匹配else break;for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){// 状态转移方程,分析 dp[i][j]等于什么,分情况讨论 if(p[j] == '?' && dp[i - 1][j - 1]) dp[i][j] = true;  // 当 p[j] 是 '?' 时else if(p[j] == '*') dp[i][j] = dp[i][j - 1] || dp[i - 1][j]; // 当p[j]是 '*' 时,用数学推算出来else if(p[j] == s[i] && dp[i - 1][j - 1]) dp[i][j] = true;  // 当p[j] 等于 s[i] 时}}return dp[m][n];}};

5. 正则表达式匹配

题目链接 -> Leetcode -10.正则表达式匹配

Leetcode -10.正则表达式匹配

题目:给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。

‘.’ 匹配任意单个字符
‘*’ 匹配零个或多个前面的那一个元素
所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。

示例 1:
输入:s = “aa”, p = “a”
输出:false
解释:“a” 无法匹配 “aa” 整个字符串。

示例 2:
输入:s = “aa”, p = “a*”
输出:true
解释:因为 ‘*’ 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 ‘a’。因此,字符串 “aa” 可被视为 ‘a’ 重复了一次。

示例 3:
输入:s = “ab”, p = “.*”
输出:true
解释:". * " 表示可匹配零个或多个(’ * ‘)任意字符(’.')。

提示:

  • 1 <= s.length <= 20
  • 1 <= p.length <= 20
  • s 只包含从 a - z 的小写字母。
  • p 只包含从 a - z 的小写字母,以及字符.和 * 。
  • 保证每次出现字符 * 时,前面都匹配到有效的字符

思路:

  1. 状态表示:dp[i][j] 表示:字符串 p 的 [0, j] 区间和字符串 s 的 [0, i] 区间是否可以匹配;
  2. 状态转移方程:根据最后⼀个位置的元素,结合题⽬要求,分情况讨论:
  • 当 s[i] == p[j] 或 p[j] == ‘.’ 的时候,此时两个字符串匹配上了当前的⼀个字符,只能从 dp[i - 1][j - 1] 中看当前字符前⾯的两个⼦串是否匹配。只能继承上个状态中的匹配结果, dp[i][j] = dp[i - 1][j - 1] ;
  • 当 p[j] == '’ 的时候,和上道题稍有不同的是,上道题 "" 本⾝便可匹配 0 ~ n 个字符,但此题是要带着 p[j - 1] 的字符⼀起,匹配 0 ~ n 个和 p[j - 1] 相同的字符。此时,匹配策略有两种选择:
    a. ⼀种选择是: p[j - 1]* 匹配空字符串,此时相当于这两个字符都没有撇配,直接继承状态 dp[i][j - 2] ,此时 dp[i][j] = dp[i][j - 2] ;
    b. 另⼀种选择是: p[j - 1]* 向前匹配 1 ~ n 个字符,直⾄匹配上整个 s1 串;此时相当于从 dp[k][j - 2] (0 < k <= i) 中所有匹配情况中,选择性继承可以成功的情况。此时 dp[i][j] = dp[k][j - 2] (0 < k <= i 且 s[k]~s[i] = p[j - 1]) ;
  • 当 p[j] 不是特殊字符,且不与 s[i] 相等时,无法匹配。

三种情况加起来,就是所有可能的匹配结果。

在这里插入图片描述

综上所述,状态转移方程为:

  • 当 s[i] == p[j] 或 p[j] == ‘.’ 时: dp[i][j] = dp[i][j - 1] ;
  • 当 p[j] == ‘*’ 时,有多种情况需要讨论: dp[i][j] = dp[i][j - 2] ;dp[i][j] = dp[k][j - 1] (0 <= k <= i)

优化:当我们发现,计算一个状态的时候,需要一个循环才能搞定的时候,我们要想到去优化。优化的方向就是用一个或者两个状态来表示这一堆的状态。通常就是把它写下来,然后用数学的方式做一下等价替换:

当 p[j] == ‘*’ 时,状态转移方程为:
dp[i][j] = dp[i][j - 2] || dp[i - 1][j - 2] || dp[i - 2][j - 2] …

我们发现 i 是有规律的减小的,因此我们去看看 dp[i - 1][j] :
dp[i - 1][j] = dp[i - 1][j - 2] || dp[i - 2][j - 2] || dp[i - 3][j - 2] …

我们发现, dp[i][j] 的状态转移方程里面除了第一项以外,其余的都可以用 dp[i - 1][j] 替代。因此,我们优化我们的状态转移方程为: dp[i][j] = dp[i][j - 2] || dp[i - 1][j] .

  1. 初始化:

由于 dp 数组的值设置为是否匹配,为了不与答案值混淆,我们需要将整个数组初始化为 false.

由于需要用到前一行和前一列的状态,我们初始化第一行、第一列即可;dp[0][0] 表示两个空串能否匹配,答案是显然的, 初始化为 true;第一行表示 s 是一个空串, p 串和空串只有一种匹配可能,即 p 串全部字符表示为 “任⼀字符+ *”,此时也相当于空串匹配上空串。所以,我们可以遍历 p 串,把所有前导为 "任⼀字符 + *"的 p 子串和空串的 dp 值设为 true.

  1. 返回值:根据状态表示,返回 dp[m][n] 的值.

代码如下:

		class Solution {public:bool isMatch(string s, string p) {int m = s.size(), n = p.size();// dp[i][j] 表⽰,字符串 p 的 [0, j] 区间和字符串 s 的 [0, i] 区间是否可以匹配vector<vector<bool>> dp(m + 1, vector<bool>(n + 1));s = ' ' + s, p = ' ' + p;// 完成初始化// 第⼀⾏表⽰ s 是⼀个空串, p 串和空串只有⼀种匹配可能,即 p 串全部字符表⽰为 "任⼀字符+ *",此时也相当于空串匹配上空串。所以,我们可以遍历 p 串,把所有前导为 "任⼀字符 + *"的 p ⼦串和空串的 dp 值设为 true 。因为 "任⼀字符+ *" 可以表示空串dp[0][0] = true;for(int i = 2; i <= n; i += 2) if(p[i] == '*') dp[0][i] = true, dp[0][i - 1] = true;else break;for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){// dp[i][j] = dp[i][j - 2] || dp[i - 1][j] 使用数学推导// dp[i][j - 2] 不会报错是因为第一个位置不可能是'*'if(p[j] == '*') dp[i][j] = dp[i][j - 2] || dp[i - 1][j] && (p[j - 1] == s[i] || p[j - 1] == '.');else dp[i][j] = ((p[j] == s[i] || p[j] == '.') && dp[i - 1][j - 1]);}}return dp[m][n];}};

6. 交错字符串

题目链接 -> Leetcode -97.交错字符串

Leetcode -97.交错字符串

题目:给定三个字符串 s1、s2、s3,请你帮忙验证 s3 是否是由 s1 和 s2 交错 组成的。

两个字符串 s 和 t 交错 的定义与过程如下,其中每个字符串都会被分割成若干 非空 子字符串:

s = s1 + s2 + … + sn
t = t1 + t2 + … + tm
| n - m| <= 1
交错 是 s1 + t1 + s2 + t2 + s3 + t3 + … 或者 t1 + s1 + t2 + s2 + t3 + s3 + …
注意:a + b 意味着字符串 a 和 b 连接。

示例 1:
输入:s1 = “aabcc”, s2 = “dbbca”, s3 = “aadbbcbcac”
输出:true

示例 2:
输入:s1 = “aabcc”, s2 = “dbbca”, s3 = “aadbbbaccc”
输出:false

示例 3:
输入:s1 = “”, s2 = “”, s3 = “”
输出:true

提示:

  • 0 <= s1.length, s2.length <= 100
  • 0 <= s3.length <= 200
  • s1、s2、和 s3 都由小写英文字母组成

思路:

  1. 状态表示:dp[i][j] 表示字符串 s1 中 [1, i] 区间内的字符串以及 s2 中 [1, j] 区间内的字符串,能否拼接成 s3 中 [1, i + j] 区间内的字符串;
  2. 状态转移方程:

先分析一下题目,题目中交错后的字符串为 s1 + t1 + s2 + t2 + s3 + t3… ,看似一个 s 一个 t 。实际上 s1 能够拆分成更小的一个字符,进而可以细化成 s1 + s2 + s3 + t1 + t2 + s4… ;也就是说,并不是前一个用了 s 的子串,后一个必须要用 t 的子串。这一点理解,对我们的状态转移很重要。

继续根据两个区间上「最后一个位置的字符」,结合题目的要求,来进行「分类讨论」:

  • 当 s3[i + j] = s1[i] 的时候,说明交错后的字符串的最后一个字符和 s1 的最后一个字符匹配了。那么整个字符串能否交错组成,变成:s1 中 [1, i - 1] 区间上的字符串以及 s2 中 [1, j] 区间上的字符串,能够交错形成 s3 中 [1, i + j - 1] 区间上的字符串,也就是 dp[i - 1][j] ;此时 dp[i][j] = dp[i - 1][j];
  • 当 s3[i + j] = s2[j] 的时候,说明交错后的字符串的最后一个字符和 s2 的最后一个字符匹配了。那么整个字符串能否交错组成,变成:s1 中 [1, i] 区间上的字符串以及 s2 中 [1, j - 1] 区间上的字符串,能够交错形成 s3 中 [1, i + j - 1] 区间上的字符串,也就是 dp[i][j - 1] ;
  • 当两者的末尾都不等于 s3 最后一个位置的字符时,说明不可能是两者的交错字符串。

上述三种情况下,只要有一个情况下能够交错组成目标串,就可以返回 true;因此,我们可以定义状态转移为:

  • dp[i][j] = (s1[i - 1] == s3[i + j - 1] && dp[i - 1][j]) || (s2[j - 1] == s3[i + j - 1] && dp[i][j - 1])
  1. 初始化:
    由于用到 i - 1 , j - 1 位置的值,因此需要初始化「第一个位置」以及「第一行」和「第一列」。
  • 第一个位置:dp[0][0] = true ,因为空串 + 空串能够构成一个空串。
  • 第一行:第一行表示 s1 是一个空串,我们只用考虑 s2 即可。因此状态转移之和 s2 有关:dp[0][j] = s2[j - 1] == s3[j - 1] && dp[0][j - 1] , j 从 1 到 n( n 为 s2 的长度)
  • 第一列:第一列表示 s2 是一个空串,我们只用考虑 s1 即可。因此状态转移之和 s1 有关:dp[i][0] = s1[i - 1] == s3[i - 1] && dp[i - 1][0] , i 从 1 到 m( m 为 s1 的长度)
  1. 返回值:根据「状态表示」,我们需要返回 dp[m][n] 的值。

代码如下:

		class Solution {public:bool isInterleave(string s1, string s2, string s3) {int l1 = s1.size(), l2 = s2.size(), l3 = s3.size();if(l1 + l2 != l3) return false;s1 = " " + s1, s2 = " " + s2, s3 = " " + s3;// 完成初始化// dp[i][j] 表⽰字符串 s1 中 [1, i] 区间内的字符串以及 s2 中 [1, j] 区间内的字符串,能否拼接成 s3 中 [1, i + j] 区间内的字符串vector<vector<bool>> dp(l1 + 1, vector<bool>(l2 + 1));dp[0][0] = true;// 第⼀⾏表⽰ s1 是⼀个空串,我们只⽤考虑 s2 即可for(int j = 1; j <= l2; j++) if(s2[j] == s3[j]) dp[0][j] = true;else break;// 第⼀列表⽰ s2 是⼀个空串,我们只⽤考虑 s1 即可for(int i = 1; i <= l1; i++) if(s1[i] == s3[i]) dp[i][0] = true;else break;// 开始填表for(int i = 1; i <= l1; i++){for(int j = 1; j <= l2; j++){// 比较 s1 和 s2 中最后一个字符和 s3 中最后一个字符是否相同dp[i][j] = (s1[i] == s3[i + j] && dp[i - 1][j]) ||(s2[j] == s3[i + j] && dp[i][j - 1]);}}return dp[l1][l2];} };

7. 两个字符串的最小ASCII删除和

题目链接 -> Leetcode -712.两个字符串的最小ASCII删除和

Leetcode -712.两个字符串的最小ASCII删除和

题目:给定两个字符串s1 和 s2,返回 使两个字符串相等所需删除字符的 ASCII 值的最小和 。

示例 1:
输入: s1 = “sea”, s2 = “eat”
输出 : 231
解释 : 在 “sea” 中删除 “s” 并将 “s” 的值(115)加入总和。
在 “eat” 中删除 “t” 并将 116 加入总和。
结束时,两个字符串相等,115 + 116 = 231 就是符合条件的最小和。

示例 2 :
输入 : s1 = “delete”, s2 = “leet”
输出 : 403
解释 : 在 “delete” 中删除 “dee” 字符串变成 “let”,
将 100[d] + 101[e] + 101[e] 加入总和。在 “leet” 中删除 “e” 将 101[e] 加入总和。
结束时,两个字符串都等于 “let”,结果即为 100 + 101 + 101 + 101 = 403 。
如果改为将两个字符串转换为 “lee” 或 “eet”,我们会得到 433 或 417 的结果,比答案更大。

提示 :

  • 0 <= s1.length, s2.length <= 1000
  • s1 和 s2 由小写英文字母组成

思路:正难则反,求两个字符串的最小 ASCII 删除和,其实就是找到两个字符串中所有的公共子序列里面, ASCII 最大和。因此,我们的思路就是按照「最长公共子序列」的分析方式来分析。

  1. 状态表示:dp[i][j] 表示: s1 的 [0, i] 区间以及 s2 的 [0, j] 区间内的所有的子序列中,公共子序列的 ASCII 最大和。
  2. 状态转移方程:

对于 dp[i][j] 根据「最后一个位置」的元素,结合题目要求,分情况讨论:

  • 当 s1[i] == s2[j] 时:应该先在 s1 的 [0, i - 1] 区间以及 s2 的 [0, j - 1] 区间内找一个公共子序列的最大和,然后在它们后面加上一个 s1[i] 字符即可。
    此时 dp[i][j] = dp[i - 1][j - 1] + s1[i] ;
  • 当 s1[i] != s2[j] 时:公共子序列的最大和会有三种可能:
    (1) s1 的 [0, i - 1] 区间以及 s2 的 [0, j] 区间内:此时 dp[i][j] = dp[i - 1][j] ;
    (2) s1 的 [0, i] 区间以及 s2 的 [0, j - 1] 区间内:此时 dp[i][j] = dp[i][j - 1] ;
    (3) s1 的 [0, i - 1] 区间以及 s2 的 [0, j - 1] 区间内:此时 dp[i][j] = dp[i - 1][j - 1] ;
    但是前两种情况里面包含了第三种情况,因此仅需考虑前两种情况下的最大值即可。

综上所述,状态转移方程为:

  • 当 s1[i - 1] == s2[j - 1] 时, dp[i][j] = dp[i - 1][j - 1] + s1[i] ;
  • 当 s1[i - 1] != s2[j - 1] 时, dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
  1. 返回值:根据「状态表示」,我们不能直接返回 dp 表里面的某个值:
    i. 先找到 dp[m][n] ,也是最大公共 ASCII 和;
    ii. 统计两个字符串的 ASCII 码和 s u m;
    iii. 返回 sum - 2 * dp[m][n]

代码如下:

		class Solution {public:int minimumDeleteSum(string s1, string s2) {int m = s1.size(), n = s2.size();   //dp[i][j] 表⽰: s1 的 [0, i] 区间以及 s2 的 [0, j] 区间内的所有的⼦序列中,公共⼦序列的 ASCII 最⼤和。vector<vector<int>> dp(m + 1, vector<int>(n + 1));s1 = ' ' + s1, s2 = ' ' + s2;int sum = 0, flag = 1;for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){// 有s1[i]无s2[j] 或 无s1[i]有s2[j] (这两种情况包括无s1[i]无s2[j])dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);// 既有s1[i]也有s2[j]if(s1[i] == s2[j]) dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + s1[i]);if(flag) sum += s2[j];  // 计算 s2 字符串总和,不能在循环外计算,会把前面的 ' ' 加上}sum += s1[i];  // 计算 s1 字符串总和flag = 0;}return sum - 2*dp[m][n];}};

8. 最长重复子数组

题目链接 -> Leetcode -718.最长重复子数组

Leetcode -718.最长重复子数组

题目:给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 。

示例 1:
输入:nums1 = [1, 2, 3, 2, 1], nums2 = [3, 2, 1, 4, 7]
输出:3
解释:长度最长的公共子数组是[3, 2, 1] 。

示例 2:
输入:nums1 = [0, 0, 0, 0, 0], nums2 = [0, 0, 0, 0, 0]
输出:5

提示:

  • 1 <= nums1.length, nums2.length <= 1000
  • 0 <= nums1[i], nums2[i] <= 100

思路:子数组是数组中「连续」的一段,我们习惯上「以某一个位置为结尾」来研究。由于是两个数组,因此我们可以尝试:以第一个数组的 i 位置为结尾以及第二个数组的 j 位置为结尾来解决问题。

  1. 状态表示:dp[i][j] 表示「以第一个数组的 i 位置为结尾」,以及「第二个数组的 j 位置为结尾」公共的 、长度最长的「子数组」的长度。
  2. 状态转移方程:对于 dp[i][j] ,当 nums1[i] == nums2[j] 的时候,才有意义,此时最长重复子数组的长度应该等于 1 加上除去最后一个位置时,以 i - 1, j - 1 为结尾的最长重复子数组的长度。因此,状态转移方程为: dp[i][j] = 1 + dp[i - 1][j - 1]
  3. 返回值:根据「状态表示」,我们需要返回 dp 表里面的「最大值」

代码如下:

		class Solution {public:int findLength(vector<int>& nums1, vector<int>& nums2) {int m = nums1.size(), n = nums2.size();//dp[i][j] 表⽰「以第⼀个数组的 i 位置为结尾」,以及「第⼆个数组的 j 位置为结尾」公共的 、⻓度最⻓的「⼦数组」的⻓度vector<vector<int>> dp(m + 1, vector<int>(n + 1));int ret = INT_MIN;for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){// 两个元素相等if(nums1[i - 1] == nums2[j - 1]) dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 1);ret = max(ret, dp[i][j]);}}return ret;}};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/247621.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

堆的概念,性质及其实现

1.堆的概念及结构 如果有一个关键码的集合K { &#xff0c; &#xff0c; &#xff0c;…&#xff0c; }&#xff0c;把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中&#xff0c;并满足&#xff1a; < 且 < ( > 且 > ) i 0&#xff0c;1&#x…

Java RC4加密算法

一、RC4加密算法 在密码学中&#xff0c;RC4&#xff08;来自Rivest Cipher 4的缩写&#xff09;是一种流加密算法&#xff0c;密钥长度可变。它加解密使用相同的密钥&#xff0c;因此也属于对称加密算法。 百度百科 - RC4&#xff1a;https://baike.baidu.com/item/RC4/34545…

JavaEE 网络原理

JavaEE 网络原理 文章目录 JavaEE 网络原理1. 网络互连1.1 局域网LAN1.2 广域网WAN 2. 网络通信基础2.1 IP地址2.2 端口号 3. 网络协议3.1 概念3.2 五元组3.3 协议分层3.4 TCP/IP 五层模型3.5 封装和分用 1. 网络互连 随着时代的发展&#xff0c;需要多个计算机协同工作来完成…

Docker安装RcoketMQ

1、Docker安装RcoketMQ-4.9.4 在同级文件夹创建目录config&#xff0c;并在里面创建文件broker.conf&#xff0c;文件内容如下&#xff1a; brokerClusterNameDefaultCluster brokerNamebroker-a brokerId0 deleteWhen04 fileReservedTime48 brokerRoleASYNC_MASTER flushDis…

Java项目:基于SSM框架实现的高校毕业生就业管理系统(ssm+B/S架构+源码+数据库+毕业论文)

一、项目简介 本项目是一套ssm817基于SSM框架实现的高校毕业生就业管理系统&#xff0c;主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者。 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调…

Qlik Sense : IntervalMatch(离散匹配)

什么是IntervalMatch IntervalMatch 前缀用于创建表格以便将离散数值与一个或多个数值间隔进行匹配&#xff0c;并且任选匹配一个或多个额外关键值。 语法&#xff1a; IntervalMatch (matchfield)(loadstatement | selectstatement ) IntervalMatch (matchfield,keyfield…

Docker部署Stable-Diffusion-webui

前排提示&#xff1a;如果不想折腾&#xff0c;可直接跳到最后获取封装好的容器&#xff0c;一键运行 :D 前言 乘上AI生成的快车&#xff0c;一同看看沿途的风景。 启一个miniconda容器 docker run -itd -v 宿主机内SD项目路径:/tmp --gpus all --ipc host -p 7860:7860 con…

正则匹配 | 正则实际应用探索分享

这并不是一篇教正则基础的文章&#xff0c;其正则式不能对您进行使用后的结果负责&#xff0c;请以研究的眼光看待本篇文章。 技术就是懒人为了更好的懒才会想办法搞的东西&#xff0c;我最近因为某些原因需要频繁删除注释 我就想到通过替换的正则功能快速删除文件中的简单注…

RT-Thread: STM32 SPI使用流程

1.添加驱动 ①点开设置界面 ②勾选看门 SPI 驱动 ③点击保存 ④查看添加的驱动文件 drv_spi.c 2.打开驱动头文件定义 ①打开配置文件 ②打开定义 3.打开需要开启的SPI总线 打开 drivers 目录下的 board.h 用SPI搜索&#xff0c;找到如下文字&#xff0c;打开对应的宏。 /*-…

上门服务小程序|预约上门服务系统开发有哪些功能?

在现代快节奏的生活中&#xff0c;压力和疲劳常常困扰着我们。为了缓解这种状况&#xff0c;越来越多的人选择去按摩店进行放松。然而&#xff0c;繁忙的工作和家庭责任往往让我们无法抽出时间去按摩店。在这种情况下&#xff0c;上门按摩服务应运而生。而随着科技的发展&#…

Niushop 开源商城 v5.1.7:支持PC、手机、小程序和APP多端电商的源码

Niushop 系统是一款基于 ThinkPHP6 开发的电商系统,提供了丰富的功能和完善的商品机制。该系统支持普通商品和虚拟商品,并且针对虚拟商品还提供了完善的核销机制。同时,它也支持新时代的商业模式,如拼团、分销和多门店砍价等营销活动。 配送方式方面,Niushop 系统支持物流…

JAVAEE初阶 网络编程(六)

TCP协议 一. 四次挥手二. 连接管理过程中TCP状态的变化2.1 listen状态2.2 established状态2.3 CLOSE_WAIT状态2.4 TIME_WAIT状态 三. 滑动窗口3.1 ack丢了3.2 数据丢了 一. 四次挥手 我们都知道&#xff0c;在三次握手中是可以把中间步骤合并成一个步骤执行&#xff0c;那么在四…

openGaussdb5.0单点企业版部署_Centos7_x86

本文档环境&#xff1a;CentOS7.9 x86_64 4G1C40G python2.7.5 交互式初始化环境方式 介绍 openGauss是一款开源关系型数据库管理系统&#xff0c;采用木兰宽松许可证v2发行。openGauss内核深度融合华为在数据库领域多年的经验&#xff0c;结合企业级场景需求&#xff0c;持续…

使用vscode查bug

具体操作 修改CMakeList.txt # set(CMAKE_BUILD_TYPE "Release")//注释Release模式 set(CMAKE_BUILD_TYPE "Debug")//设置为Debug模式 # set(CMAKE_CXX_FLAGS_RELEASE "-O3 -Wall -g")//注释*这行代码是用来设置 CMake 构建系统中 Release 模式…

我道歉!我被小米汽车举报了

文 | AUTO芯球 作者 | 雷歌 前几天&#xff0c;我写了《小米&#xff0c;不要将卖手机那套话术带进汽车圈》。 小米汽车向腾讯举报&#xff0c;谴责我对他们进行“品牌抹黑、虚构诋毁”&#xff01; 我要向小米道歉。 我不该说“16.8亿种驾驶模式是文字游戏”。那是你们的说…

[C++]c++判断CPU的类型及支持的指令集

1、利用cpui判断cpu的类型及支持的指令集&#xff0c;可以进行条件编程&#xff1a;&#xff08;InstructionSet.h&#xff09; #pragma once// InstructionSet.cpp // Compile by using: cl /EHsc /W4 InstructionSet.cpp // processor: x86, x64 // Uses the __cpuid intrin…

DolphinScheduler + Amazon EMR Serverless 的集成实践

01 背景 Apache DolphinScheduler 是一个分布式的可视化 DAG 工作流任务调度开源系统&#xff0c;具有简单易用、高可靠、高扩展性、⽀持丰富的使用场景、提供多租户模式等特性。适用于企业级场景&#xff0c;提供了一个可视化操作任务、工作流和全生命周期数据处理过程的解决方…

uniapp上传音频文件到服务器

视频教程地址&#xff1a; 【uniapp录音上传组件&#xff0c;将录音上传到django服务器】 https://www.bilibili.com/video/BV1wi4y1p7FL/?share_sourcecopy_web&vd_sourcee66c0e33402a09ca7ae1f0ed3d5ecf7c uniapp 录制音频文件上传到django服务器保存到服务器 &#xf…

群辉开启WebDav服务+cpolar内网穿透实现移动端ES文件浏览器远程访问本地NAS文件

文章目录 1. 安装启用WebDAV2. 安装cpolar3. 配置公网访问地址4. 公网测试连接5. 固定连接公网地址6. 使用固定地址测试连接 本文主要介绍如何在群辉中开启WebDav服务&#xff0c;并结合cpolar内网穿透工具生成的公网地址&#xff0c;通过移动客户端ES文件浏览器即可实现移动设…

msfconsole实战使用(结合靶场演示)

msfconsole实战使用 前言 MSFconsole&#xff08;Metasploit Framework Console&#xff09;是Metasploit框架的一部分&#xff0c;是一个功能强大的渗透测试工具。Metasploit框架是一个开源的安全工具&#xff0c;旨在开发、测试和执行针对计算机系统的攻击。MSFconsole是Me…