数学建模 - 线性规划入门:Gurobi + python

在工程管理、经济管理、科学研究、军事作战训练及日常生产生活等众多领域中,人们常常会遇到各种优化问题。例如,在生产经营中,我们总是希望制定最优的生产计划,充分利用已有的人力、物力资源,获得最大的经济效益;在运输问题中,我们总是希望设计最优的运输方案,在完成运输任务的前提下,力求运输成本最小等。针对优化问题的数学建模也是数学建模竞赛中一类比较常见的问题,这样的问题常常可以使用数学规划模型进行研究。

数学规划是运筹学的一个重要分支,而线性规划又是数学规划中一部分主要内容。很多实际问题都可以归结为“线性规划”问题。线性规划(Linear Programming,LP)有比较完善的理论基础和有效的求解方法,在实际问题中有极其广泛的应用。

一句话:在什么限制(约束)下变量取什么值可以让的目标最优。

分析:

  1. 求什么?3种产品的产量 – 决策变量
  2. 考虑什么条件?原来料不能用光 and 总加工时间得够用 – 约束条件
  3. 达到什么目标?使得利润最大 – 目标函数

产品的产量应收到某些条件的限制。首先,两种原材料每天的实际消耗量不能超过其可用数量,因此有

步骤:

  1. 分析问题,找出决策变量
  2. 根据问题给出的条件,找出决策变量必须满足的一组线性等式或者不等式约束,即为约束条件。
  3. 根据问题的目标,构造关于决策变量的一个线性函数,即为目标函数。

有了决策变量、约束条件和目标函数这3个要素之后,一个线性规划模型就建立起来了。

求解:

使用Gurobi求解器, Why Gurobi? 还是那句话:专业的事情专业的干

# 1.Gurobi版本
profit = [70, 50, 60]  # 各产品恒单位利润
MatA = [2, 4, 3]    # 各产品单位消耗的A原材料
MatB = [3, 1, 5]   # 各产品单位消耗的B原材料
time = [7, 3, 5]   # 各产品单位生产时间resA = 150  # A原材料每天可用量
resB = 160   # B原材料每天可用量
available_time = 200  # 每天可用生产时间from gurobipy import *
m = Model("maximize_profit") # 给模型起个名字
# 变量
x = m.addVars(3, vtype=GRB.CONTINUOUS, name="x")
# 目标
m.setObjective(sum(profit[i]*x[i] for i in range(3)), GRB.MAXIMIZE)
# 约束
m.addConstr(sum(MatA[i]*x[i] for i in range(3)) <= resA, "c0")
m.addConstr(sum(MatB[i]*x[i] for i in range(3)) <= resB, "c1")
m.addConstr(sum(time[i]*x[i] for i in range(3)) <= available_time,  "c2")m.optimize()
print("-----------------------------------------------------------------")
print("最大化利润为: ", m.objVal, "元")
# 检查模型是否存在最优解
if m.status == GRB.OPTIMAL:# 输出每种产品的生产数量for i in range(3):print(f'产品{i+1} 生产数量: {x[i].x} 公斤')

根据结果答:生产A产品15.90公斤,B产品29.54公斤,不生产C产品时利润最大2590.90元

注:如果大家安装Gurobi失败,可以先用python的pulp库做替代。

PuLP 是一个开源的 Python 语言线性规划建模库。它提供了构建线性规划(LP)、整数规划(IP)以及混合整数规划(MIP)模型的能力。PuLP 不自带求解器,而是作为一个接口层,可以与多个第三方求解器结合使用,包括但不限于 COIN-OR 的 CBC、GLPK、Gurobi、CPLEX 等。用户可以通过 PuLP 定义变量、约束条件和目标函数,并选择合适的求解器来解决问题。Pulp默认的求解器是CBC。

在全球最著名的专业优化器评比网站 Decision Tree for Optimization Software (plato.asu.edu/bench.html) 中,Gurobi 比其他大规模优化器有明显优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/249692.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pytorch_car_caring 排坑记录

pytorch_car_caring 排坑记录 任务踩坑回顾简单环境问题代码版本问题症状描述解决方法 cuda问题&#xff08;异步问题&#xff09;症状描述解决方法 任务 因为之前那个MPC代码跑出来的效果不理想&#xff0c;看了一天代码&#xff0c;大概看明白了&#xff0c;但要做改进还要有…

R-YOLO

Abstract 提出了一个框架&#xff0c;名为R-YOLO&#xff0c;不需要在恶劣天气下进行注释。考虑到正常天气图像和不利天气图像之间的分布差距&#xff0c;我们的框架由图像翻译网络&#xff08;QTNet&#xff09;和特征校准网络&#xff08;FCNet&#xff09;组成&#xff0c;…

【数睿】数睿常见问题处理

连接器请求地址修改 cat /home/sdata2/tomcat/bin/setenv.sh修改里面的 SYSTEM_URL 为数睿服务实际访问地址 如图所示 连接器执行 异常日志 2024-01-23 18:01:49,586 (conf-file-poller-0) [ERROR - org.apache.flume.node.PollingPropertiesFileConfigurationProvider$Fil…

全链路压测的关键点是什么?

全链路压测是一种重要的性能测试方法&#xff0c;用于评估应用程序或系统在真实生产环境下的性能表现。通过模拟真实用户行为和流量&#xff0c;全链路压测能够全面评估系统在不同负载下的稳定性和性能表现。本文将介绍全链路压测的关键点&#xff0c;以帮助企业更好地理解和应…

Redis核心技术与实战【学习笔记】 - 10.浅谈CPU架构对Redis性能的影响

概述 可能很多人都认为 Redis 和 CPU 的关系简单&#xff0c;Redis 的线程在 CPU 上运行&#xff0c;CPU 快 Reids 处理请求的速度也很快。 其实&#xff0c;这种认知是片面的&#xff0c;CPU 的多核架构及多 CPU 结构&#xff0c;也会影响到 Redis 的性能。如果不了解 CPU 对…

【目标检测】对DETR的简单理解

【目标检测】对DETR的简单理解 文章目录 【目标检测】对DETR的简单理解1. Abs2. Intro3. Method3.1 模型结构3.2 Loss 4. Exp5. Discussion5.1 二分匹配5.2 注意力机制5.3 方法存在的问题 6. Conclusion参考 1. Abs 两句话概括&#xff1a; 第一个真正意义上的端到端检测器最…

实习日志10

1.用户信息 1.1.在用户管理中编辑用户信息 1.2.绑定公司id 1.3.显示在页面 2.修改识别逻辑 2.1.分析 先识别&#xff0c;再判断&#xff0c;清空键把识别结果清空 2.2.写码 修改了发票识别逻辑&#xff0c;略... 3.接高拍仪 3.1.js引入报错 分析&#xff1a; 遇到的错误…

MySQL数据库基础第一篇(SQL通用语法与分类)

文章目录 一、SQL通用语法二、SQL分类三、DDL语句四、DML语句1.案例代码2.读出结果 五、DQL语句1.DQL-基本查询2.DQL-条件查询3.DQL-聚合函数4.DQL-分组查询5.DQL-排序查询6.DQL-分页查询7.DQL语句-执行顺序1.案例代码2.读出结果 六、DCL语句1.DCL-管理用户2.DCL-权限控制1.案例…

鸿蒙开发-UI-页面路由

鸿蒙开发-UI-组件 鸿蒙开发-UI-组件2 鸿蒙开发-UI-组件3 鸿蒙开发-UI-气泡/菜单 文章目录 一、基本概念 二、页面跳转 1.router基本概念 2.使用场景 3.页面跳转参数传递 三、页面返回 1.普通页面返回 2.页面返回前增加一个询问框 1.系统默认询问框 2.自定义询问框 总…

【Mysql】数据库架构学习合集

目录 1. Mysql整体架构1-1. 连接层1-2. 服务层1-3. 存储引擎层1-4. 文件系统层 2. 一条sql语句的执行过程2-1. 数据库连接池的作用2-2. 查询sql的执行过程2-1. 写sql的执行过程 1. Mysql整体架构 客户端&#xff1a; 由各种语言编写的程序&#xff0c;负责与Mysql服务端进行网…

【安装记录】Chrono Engine安装记录

本文仅用于个人安装记录。 官方安装教程 https://api.projectchrono.org/8.0.0/tutorial_install_chrono.html Windows下安装 windows下安装就按照教程好了。采用cmake-gui进行配置&#xff0c;建议首次安装只安装核心模块。然后依此configure下irrlicht&#xff0c;sensor…

J-Link:STM32使用J-LINK烧录程序,其他MCU也通用

说明&#xff1a;本文记录使用J-LINK烧录STM32程序的过程。 1. J-LINK驱动、软件下载 1、首先拥有硬件J-Link烧录器。 2、安装J-Link驱动程序SEGGER 下载地址如下 https://www.segger.com 直接下载就可以了。 2.如何使用J-LINK向STM32烧写程序 1、安装好以后打开J-LINK Fl…

从零开始:CentOS系统下搭建DNS服务器的详细教程

前言 如果你希望在CentOS系统上建立自己的DNS服务器,那么这篇文章绝对是你不容错过的宝藏指南。我们提供了详尽的步骤和实用技巧,让你能够轻松完成搭建过程。从安装必要的软件到配置区域文件,我们都将一一为你呈现。无论你的身份是运维人员,还是程序员,抑或是对网络基础设…

【脑电信号处理与特征提取】P7-涂毅恒:运用机器学习技术和脑电进行大脑解码

运用机器学习技术和脑电进行大脑解码 科学研究中的大脑解码 比如2019年在Nature上一篇文章&#xff0c;来自UCSF的Chang院士的课题组&#xff0c;利用大脑活动解码语言&#xff0c;帮助一些患者恢复语言功能。 大脑解码的重要步骤 大脑解码最重要的两步就是信号采集和信号…

Coremail启动鸿蒙原生应用开发,打造全场景邮件办公新体验

1月18日&#xff0c;华为在深圳举行鸿蒙生态千帆启航仪式&#xff0c;Coremail出席仪式并与华为签署鸿蒙合作协议&#xff0c;宣布正式启动鸿蒙原生应用开发。作为首批拥抱鸿蒙的邮件领域伙伴&#xff0c;Coremail的加入标志着鸿蒙生态版图进一步完善。 Coremail是国内自建邮件…

浏览器——HTTP缓存机制与webpack打包优化

文章目录 概要强缓存定义开启 关闭强缓存协商缓存工作机制通过Last-Modified If-Modified-Since通过ETag If-None-Match 不使用缓存前端利用缓存机制&#xff0c;修改打包方案webpack 打包webpack 打包名称优化webpack 默认的hash 值webapck其他hash 类型配置webpack打包 web…

数据结构-内部排序

简介 排序&#xff08;Sorting&#xff09;&#xff1a;将一个数据元素&#xff08;或记录&#xff09;的任意序列&#xff0c;重新排列成一个按关键字有序的序列 排序算法分为内部排序和外部排序 内部排序&#xff1a;在排序期间数据对象全部存放在内存的排序 外部排序&am…

MySQL-运维-主从复制

一、概述 二、原理 三、搭建 1、服务器准备 2、主库配置 &#xff08;1&#xff09;、修改配置文件/etc/my.cnf &#xff08;2&#xff09;、重启MySQL服务器 &#xff08;3&#xff09;、登录mysql&#xff0c;创建远程链接的账号&#xff0c;并授予主从复制权限 &#xff0…

3593 蓝桥杯 查找最大元素 简单

3593 蓝桥杯 查找最大元素 简单 // C风格解法1&#xff0c;通过率100%&#xff0c;多组数据处理样式//str "abcdefgfedcba" //abcdefg(max)fedcba//str "xxxxx" //x(max)x(max)x(max)x(max)x(max)#include<bits/stdc.h>const int N 1e2 10;char …

分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别

分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别 目录 分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现SCN-Adaboost随机配置网…