1、写作动机:
近来的大规模语言模型(例如Chat GPT)在零样本设置下取得了很好的表现,这启发作者探索基于提示的方法来解决零样本IE任务。
2、主要贡献:
提出了基于chatgpt的多阶段的信息抽取方法:在第一阶段找出可能存在于句子中的相应元素类型。然后在第二阶段,对第一阶段中的每个元素类型执行链式信息抽取。每个阶段都采用了多轮QA过程。在每一轮中,基于设计的模板和先前提取的信息构造提示,作为输入向ChatGPT提问。最后,将每一轮的结果组合成结构化数据。
3、方法:
4、实验结果:
PaddleNLP LIC2021 EE、 Text2event