OSPF排错

目录

实验拓扑图

实验要求

实验排错

故障一

故障现象

故障分析

故障解决

故障二

故障现象

故障分析

故障解决

故障三

故障现象

故障分析

故障解决

故障四

故障现象

故障分析

故障解决

故障五

故障现象

故障分析

故障解决

故障六

故障现象

故障分析

故障解决

故障七

故障现象

故障分析

故障解决


实验拓扑图


 实验要求

  1. 按照图示配置 IP 地址
  2. 按照图示分区域配置 OSPF,要求使用环回口作为 Router-id,ABR 的环回口只宣告进Area0
  3. 业务网段不允许出现协议报文
  4. R5 模拟互联网,内网通过 R1 连接互联网,在 R1 上配置默认路由并引入到 OSPF
  5. R1 上配置 EASY IP,两个业务网段都可以访问互联网
  6. 通过调整链路 Cost,避免网络中出现等价路由
  7. 为了实现 Area 0 快速收敛,10.1.1.0/24 链路上修改 Hello time 为 5 秒
  8. 排除所有网络故障,使环境符合需求,并完成排错报告

实验排错

故障一

故障现象

R1和R2之间未建立OSPF邻居

R1和R3之间,R2和R4之间都未建立OSPF邻居

故障分析

R1和R2,R1和R3,R2和R4之间的OSPF宣告配置有问题

R2与R1相连的10.1.1.0网段被宣告到了area 1中,所以R1和R2未能建立起邻居关系

同理,R1和R3之间,R1上也未宣告连接R3的网段

故障解决

将R2上连接R1的网段宣告到区域1中

[R2-ospf-1-area-0.0.0.1]undo network 10.1.1.0 0.0.0.255
[R2-ospf-1-area-0.0.0.1]qu
[R2-ospf-1]area  0
[R2-ospf-1-area-0.0.0.0]network 10.1.1.0 0.0.0.255

故障二

故障现象

当我们将R1和R2之间的宣告配置修改正确之后,R1和R2之间区域0的邻居还是建立不起来

故障分析

建立OSPF邻居失败,我们可以通过命令去查看邻居建立失败的原因

[R2]display ospf statistics error 

可以发现是由于以下三个主要原因,因为完成要求七中实现Area 0快速收敛,需要修改10.1.1.0/24这条链路的hello time为5s,但是只修改了R2这边的接口,R1这边的接口的dead time与R2的不相同,所以邻居建立失败。 

故障解决

修改R2上10.1.1.0/24这条链路的接口的dead time 和 hello time与R1保持一致

[R1-GigabitEthernet0/1]ospf timer hello 5 
[R1-GigabitEthernet0/1]undo ospf timer dead 

可以看出R1和R2已经建立了OSPF邻接关系 

[R1]display ospf peer OSPF Process 1 with Router ID 1.1.1.1Neighbor Brief InformationArea: 0.0.0.0        Router ID       Address         Pri Dead-Time  State             Interface4.4.4.4         10.1.1.2        1   15         Full/DR           GE0/1
[R1][R2]display ospf peer OSPF Process 1 with Router ID 4.4.4.4Neighbor Brief InformationArea: 0.0.0.0        Router ID       Address         Pri Dead-Time  State             Interface1.1.1.1         10.1.1.1        1   20         Full/BDR          GE0/1
[R2]

故障三

解决了故障二之后,我们发现R1和R2虽然建立了邻接,但是R1与R3,R2与R4之间的邻居始终未能建立。

故障现象

通过观察OSPF错误的原因发现一个是错误的area id造成,一个是hello time dead time造成,那么我们主要来看area id是否错误。

[R1]display ospf statistics error OSPF Process 1 with Router ID 1.1.1.1OSPF Packet Error Statistics 0         : Router ID confusion        0         : Bad packet0         : Bad version                0         : Bad checksum30        : Bad area ID                0         : Drop on unnumbered link0         : Bad virtual link           0         : Bad authentication type0         : Bad authentication key     0         : Packet too small0         : Neighbor state low         0         : Transmit error0         : Interface down             0         : Unknown neighbor187       : HELLO: Netmask mismatch    78        : HELLO: Hello-time mismatch3         : HELLO: Dead-time mismatch  0         : HELLO: Ebit option mismatch0         : DD: MTU option mismatch    0         : DD: Unknown LSA type0         : DD: Ebit option mismatch   0         : ACK: Bad ack0         : ACK: Unknown LSA type      0         : REQ: Empty request0         : REQ: Bad request           0         : UPD: LSA checksum bad0         : UPD: Unknown LSA type      0         : UPD: Less recent LSA
[R1]

故障分析

通过查看R1和R3在area 1的配置发现area id并没有配错。

那我们只能通过排查影响OSPF邻居建立的因素有哪些
  1. 宣告网段需要在同一个area id中
  2. 建立邻居关系的两个设备之间router id不能相同
  3. 宣告的网段子网掩码要相同
  4. 邻居之间链路hello time和dead time保持相同
  5. 验证密码一致
  6. 特殊区域一致

通过查看R1和R3相连链路接口的IP地址,发现它们的子网掩码长度不一致。所以这就是R1和R3之间未能建立邻居关系的真正原因

[R1-GigabitEthernet0/0]di th
#
interface GigabitEthernet0/0port link-mode routecombo enable copperip address 10.2.2.1 255.255.0.0
#
return
[R1-GigabitEthernet0/0][R3-GigabitEthernet0/0]display this
#
interface GigabitEthernet0/0port link-mode routecombo enable copperip address 10.2.2.3 255.255.255.0
#
return
[R3-GigabitEthernet0/0]

故障解决

修改R1接口的IP地址子网掩码长度 

R1与R2和R3成功建立邻接关系

[R1]display ospf peer OSPF Process 1 with Router ID 1.1.1.1Neighbor Brief InformationArea: 0.0.0.0        Router ID       Address         Pri Dead-Time  State             Interface4.4.4.4         10.1.1.2        1   18         Full/DR           GE0/1Area: 0.0.0.1        Router ID       Address         Pri Dead-Time  State             Interface3.3.3.3         10.2.2.3        1   37         Full/DR           GE0/0
[R1]

故障四

故障现象

R2和R4之间的邻居关系无法建立

故障分析

在R1和R2建立邻接关系后,我们可以发现R2这台设备的router id为4.4.4.4,虽然在区域0中和R1建立邻接关系时,这个router id 只要不与R1的router id  相同就行,但是R2在区域1中和R4建立邻接关系时,R4的router id也是4.4.4.4,所以它们的router id相同,导致它们之间无法建立邻居关系。

故障解决

将R2的router id 改为2.2.2.2,需要将ospf进程重启之后新的router id才会生效。

可以看到R2在重启了进程之后,router id 修改成功并于R4建立了邻接关系

<R2>reset ospf process 
Reset OSPF process? [Y/N]:y[R2]display ospf peer OSPF Process 1 with Router ID 2.2.2.2Neighbor Brief InformationArea: 0.0.0.0        Router ID       Address         Pri Dead-Time  State             Interface1.1.1.1         10.1.1.1        1   18         2-Way/ -          GE0/1Area: 0.0.0.1        Router ID       Address         Pri Dead-Time  State             Interface4.4.4.4         10.3.3.4        1   38         Full/DR           GE0/0
[R2]

故障五

故障现象

PC6和PC7无法ping通互联网的IP地址

故障分析

PC6和PC7没有配置IP地址和网关等信息

在R1上并没有配置默认路由连接互联网,从而也没有引入到OSPF中。所以PC无法通过网关访问到互联网

[R1]display ip routing-table Destinations : 24       Routes : 24Destination/Mask   Proto   Pre Cost        NextHop         Interface
0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0
1.1.1.1/32         Direct  0   0           127.0.0.1       InLoop0
2.2.2.2/32         O_INTRA 10  1           10.1.1.2        GE0/1
3.3.3.3/32         O_INTRA 10  1           10.2.2.3        GE0/0
4.4.4.4/32         O_INTER 10  2           10.1.1.2        GE0/1
10.1.1.0/24        Direct  0   0           10.1.1.1        GE0/1
10.1.1.1/32        Direct  0   0           127.0.0.1       InLoop0
10.1.1.255/32      Direct  0   0           10.1.1.1        GE0/1
10.2.2.0/24        Direct  0   0           10.2.2.1        GE0/0
10.2.2.1/32        Direct  0   0           127.0.0.1       InLoop0
10.2.2.255/32      Direct  0   0           10.2.2.1        GE0/0
10.3.3.0/24        O_INTER 10  2           10.1.1.2        GE0/1
10.4.4.0/24        O_INTRA 10  2           10.2.2.3        GE0/0
127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0
127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0
127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0
192.168.1.0/24     O_INTRA 10  2           10.2.2.3        GE0/0
192.168.2.0/24     O_INTER 10  3           10.1.1.2        GE0/1
202.1.1.0/24       Direct  0   0           202.1.1.1       GE0/2
202.1.1.1/32       Direct  0   0           127.0.0.1       InLoop0
202.1.1.255/32     Direct  0   0           202.1.1.1       GE0/2
224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0
224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0
255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0
[R1]

故障解决

在R3和R4这两个网关路由器上配置为dhcp服务器为PC6和PC7分发IP地址

[R3]dhcp enable 
[R3]dhcp server ip-pool 1 
[R3-dhcp-pool-1]network 192.168.1.0 mask 255.255.255.0
[R3-dhcp-pool-1]gateway-list 192.168.1.254
[R3-dhcp-pool-1]dns-list 8.8.8.8
[R3]dhcp server forbidden-ip 192.168.1.10 192.168.1.253[R4]dhcp server ip-pool 1 
[R4-dhcp-pool-1]network 192.168.2.0  mask 255.255.255.0
[R4-dhcp-pool-1]gateway-list 192.168.2.254 
[R4-dhcp-pool-1]dns-list 8.8.8.8
[R4-dhcp-pool-1]qu
[R4]dhcp server forbidden-ip 192.168.2.10 192.168.2.253

在R1上配置默认路由并引入到OSPF中

[R1]ip route-static 0.0.0.0 0 202.1.1.5 
[R1]ospf 1 router-id 1.1.1.1       
[R1-ospf-1]default-route-advertise 

PC6ping通互联网

<H3C>ping 100.1.1.1
Ping 100.1.1.1 (100.1.1.1): 56 data bytes, press CTRL_C to break
56 bytes from 100.1.1.1: icmp_seq=0 ttl=253 time=3.863 ms
56 bytes from 100.1.1.1: icmp_seq=1 ttl=253 time=2.676 ms
56 bytes from 100.1.1.1: icmp_seq=2 ttl=253 time=1.560 ms
56 bytes from 100.1.1.1: icmp_seq=3 ttl=253 time=2.423 ms
56 bytes from 100.1.1.1: icmp_seq=4 ttl=253 time=4.946 ms

PC7无法ping通互联网

故障六

故障现象

PC7无法ping通互联网

故障分析

在R1上配置的easy ip中,nat outbound 2000,acl 2000这个访问控制列表中,未运行PC7的业务网段流量通过。

[R1]acl number  2000
[R1-acl-ipv4-basic-2000]di th
#
acl basic 2000rule 0 permit source 192.168.1.0 0.0.0.255
#
return
[R1-acl-ipv4-basic-2000]

故障解决

在acl 2000中将PC7的业务网段流量放行

[R1]acl number  2000
[R1-acl-ipv4-basic-2000]rule permit source 192.168.2.0 0.0.0.255

PC7成功ping通


<H3C>ping 100.1.1.1
Ping 100.1.1.1 (100.1.1.1): 56 data bytes, press CTRL_C to break
56 bytes from 100.1.1.1: icmp_seq=0 ttl=252 time=7.689 ms
56 bytes from 100.1.1.1: icmp_seq=1 ttl=252 time=5.409 ms
56 bytes from 100.1.1.1: icmp_seq=2 ttl=252 time=6.204 ms
56 bytes from 100.1.1.1: icmp_seq=3 ttl=252 time=5.938 ms
56 bytes from 100.1.1.1: icmp_seq=4 ttl=252 time=5.104 ms--- Ping statistics for 100.1.1.1 ---
5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss
round-trip min/avg/max/std-dev = 5.104/6.069/7.689/0.897 ms
<H3C>%Jan 31 11:35:37:680 2024 H3C PING/6/PING_STATISTICS: Ping statistics for 100.1.1.1: 5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss, round-trip min/avg/max/std-dev = 5.104/6.069/7.689/0.897 ms.

故障七

故障现象

通过对网关连接PC的链路抓包发现,网关仍然在不停的向PC发送OSPFhello包。

故障分析

并未对该链路接口进行静默接口配置

故障解决

对R3和R4连接PC的接口进行静默接口配置

[R3]ospf 1 router-id 3.3.3.3
[R3-ospf-1]silent-interface g0/2[R4]ospf 1 router-id 4.4.4.4
[R4-ospf-1]silent-interface GigabitEthernet 0/2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/250256.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux服务详解

如有错误或有补充&#xff0c;以及任何改进的意见&#xff0c;请在评论区留下您的高见&#xff0c;同时文中给出大部分命令的示例&#xff0c;即是您暂时无法在Linux中查看&#xff0c;您也可以知道各种操作的功能以及输出 如果觉得本文写的不错&#xff0c;不妨点个赞&#x…

曲线拟合、多项式拟合、最小二乘法

最近在做自车轨迹预测的工作&#xff0c;遇到 曲线拟合、多项式拟合、最小二乘法这些概念有点不清晰&#xff0c; 做一些概念区别的总结&#xff1a; 曲线拟合用于查找一系列数据点的“最佳拟合”线或曲线。 大多数情况下&#xff0c;曲线拟合将产生一个函数&#xff0c;可用于…

[嵌入式软件][启蒙篇][仿真平台] STM32F103实现SPI控制OLED屏幕

上一篇&#xff1a; [嵌入式软件][启蒙篇][仿真平台] STM32F103实现LED、按键 [嵌入式软件][启蒙篇][仿真平台] STM32F103实现串口输出输入、ADC采集 [嵌入式软件][启蒙篇][仿真平台]STM32F103实现定时器 [嵌入式软件][启蒙篇][仿真平台] STM32F103实现IIC控制OLED屏幕 文章目…

Git 怎么设置用户的权限

在团队协作的软件开发中&#xff0c;对于版本控制系统Git来说&#xff0c;确保代码与数据的安全性至关重要。为了实现这一目标&#xff0c;Git提供了灵活且可定制的用户权限管理机制。下面将简单的探讨一下Git如何设置用户的权限&#xff0c;以及如何保护代码和数据。 用户身份…

提高 NFS Azure 文件共享性能

本文内容 适用于增加预读大小以提高读取吞吐量Nconnect另请参阅 本文介绍如何提高 NFS Azure 文件共享的性能。 适用于 展开表 文件共享类型SMBNFS标准文件共享 (GPv2)、LRS/ZRS 标准文件共享 (GPv2)、GRS/GZRS 高级文件共享 (FileStorage)、LRS/ZRS 增加预读大…

Spring Boot集成Redisson详细介绍

Redisson是一个用于Java的分布式和高可用的Java对象的框架&#xff0c;它基于Redis实现。在Spring Boot应用程序中集成Redisson可以帮助我们更轻松地实现分布式锁、分布式对象、分布式集合等功能。本文将介绍如何在Spring Boot项目中集成Redisson&#xff0c;并展示一些基本用法…

git远程仓库基本操作

目录 gitremote &#xff08;查看远程仓库&#xff09; git remote add [仓库名] [url] git clone [url]&#xff08;克隆远程仓库到本地&#xff09; git push [名][分支名]&#xff08;提交到远程仓库&#xff09;​编辑 git pull [名][分支名]从远程仓库拉取​编辑 注意操作…

混乱字母排序——欧拉路数论

题目描述 小明接到一个神秘的任务&#xff1a;对于给定的 n 个没有顺序的字母对&#xff08;无序代表这两个字母可以前后顺序颠倒&#xff0c;区分大小写&#xff09;。请构造一个有 (n1) 个字母的混乱字符串使得每个字母对都在这个字符串中出现。 输入输出格式 输入格式 第…

three.js CSS2DRenderer、CSS2DObject渲染HTML标签

有空的老铁关注一下我的抖音&#xff1a; 效果&#xff1a; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs" style"border: 1px solid red;position: relative;"><…

SpringCloud_学习笔记_1

SpringCloud01 1.认识微服务 随着互联网行业的发展&#xff0c;对服务的要求也越来越高&#xff0c;服务架构也从单体架构逐渐演变为现在流行的微服务架构。这些架构之间有怎样的差别呢&#xff1f; 1.0.学习目标 了解微服务架构的优缺点 1.1.单体架构 单体架构&#xff…

FairGuard游戏加固入选《CCSIP 2023中国网络安全行业全景册(第六版)》

2024年1月24日&#xff0c; FreeBuf咨询正式发布《CCSIP 2023中国网络安全行业全景册(第六版)》。本次发布的全景图&#xff0c;共计展示20个一级分类、108个细分安全领域&#xff0c;旨在为广大企业提供网络安全产品选型参考&#xff0c;帮助企业了解中国网络安全技术与市场的…

一道sql注入的ctf题目致使用phpmyadmin上传 webshell 拿后台权限

以下均为靶场测试环境渗透&#xff0c;非正式环境。 遇见登录框&#xff0c;直接万能密码’or(11)or’/1 直接登录成功并返回结果: 既然存在sql注入&#xff0c;那就用sqlmap跑一下吧&#xff1a; 输出所有的数据库&#xff1a; sqlmap -u <目标URL> --dbs 要输出数据库…

docker中三种常用的持久化数据的方式

文章目录 介绍1.docker run -v2.volumes3.bind mounts 介绍 “前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。” 在Docker中&#xff0c;有以下三种常用的持久化数据的方式&#xff0c;可…

Kotlin快速入门系列10

Kotlin的委托 委托模式是常见的设计模式之一。在委托模式中&#xff0c;有两个对象参与处理同一个请求&#xff0c;接受请求的对象将请求委托给另一个对象来处理。与Java一样&#xff0c;Kotlin也支持委托模式&#xff0c;通过关键字by。 类委托 类的委托即一个类中定义的方…

2024美赛数学建模A题思路分析 - 资源可用性和性别比例

1 赛题 问题A&#xff1a;资源可用性和性别比例 虽然一些动物物种存在于通常的雄性或雌性性别之外&#xff0c;但大多数物种实质上是雄性或雌性。虽然许多物种在出生时的性别比例为1&#xff1a;1&#xff0c;但其他物种的性别比例并不均匀。这被称为适应性性别比例的变化。例…

【Javaweb程序】【C00155】基于SSM的旅游旅行管理系统(论文+PPT)

基于SSM的旅游旅行管理系统&#xff08;论文PPT&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于SSM的旅游旅行管理系统 本系统分为前台系统模块、管理员模块、用户模块以及商家模块 其中前台系统模块的权限为&#xff1a;当游客打开系统的网址后…

C++ 数论相关题目 博弈论:拆分-Nim游戏

给定 n 堆石子&#xff0c;两位玩家轮流操作&#xff0c;每次操作可以取走其中的一堆石子&#xff0c;然后放入两堆规模更小的石子&#xff08;新堆规模可以为 0 &#xff0c;且两个新堆的石子总数可以大于取走的那堆石子数&#xff09;&#xff0c;最后无法进行操作的人视为失…

Scrum敏捷开发企业培训-敏捷研发管理

课程简介 Scrum是目前运用最为广泛的敏捷开发方法&#xff0c;是一个轻量级的项目管理和产品研发管理框架。 这是一个两天的实训课程&#xff0c;面向研发管理者、项目经理、产品经理、研发团队等&#xff0c;旨在帮助学员全面系统地学习Scrum和敏捷开发, 帮助企业快速启动敏…

带libc源码gdb动态调试(导入glibc库使得可执行文件动态调试时可看见调用库函数源码)

文章目录 参考部分查看源码是否编译时有-g调试信息和符号表在 gdb 中加载 debug 文件/符号表将 debug 文件放入 ".debug" 文件夹通过 gdb 命令 set debug-file-directory directories GCC的gcc和g区别指定gcc/g&#xff0c;glibc的版本进行编译指定gcc/g的版本指定gl…

bash脚本学习笔记

一、扫盲 脚本文件是一种文本文件&#xff0c;其中包含了一系列的命令和指令&#xff0c;可以被操作系统解释器直接解释执行。脚本文件通常被用来完成特定的任务或执行重复性的操作。 脚本文件通常以某种编程语言的语法编写&#xff0c;例如 Bash、Python、Perl、Ruby 等等。…