【课程作业_01】国科大2023模式识别与机器学习实践作业

国科大2023模式识别与机器学习实践作业

作业内容

从四类方法中选三类方法,从选定的每类方法中
,各选一种具体的方法,从给定的数据集中选一
个数据集(MNIST,CIFAR-10,电信用户流失数据集 )对这三种方法进行测试比较。

  • 第一类方法:: 线性方法:线性SVM、 Logistic Regression
  • 第二类方法: 非线性方法:Kernel SVM, 决策树
  • 第三类方法: 集成学习:Bagging, Boosting
  • 第四类方法: 神经元网络:自选结构

选择数据集

  • MNIST

方法

线性SVM

方法介绍

支持向量机(SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,或者求解其对偶问题。

img

SVM学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。如上图所示, w ⋅ x + b = 0 w \cdot x+b=0 wx+b=0即为分离超平面,对于线性可分的数据集来说,这样的超平面有无穷多个(即感知机),但是几何间隔最大的分离超平面却是唯一的。

实验结果

对于每一个参数设置,做了三次实验,得到的模型准确率分别是ACC_1,ACC_2,ACC_3,平均值是ACC_M。

正则参数是正则项前面的系数。

正则参数迭代次数ACC_1ACC_2ACC_3ACC_m
10100086.37%87.57%87.15%87.03%
10200086.9%88.45%86.4%87.25%
50100087.61%86.17%87.77%87.18%
50200086.97%88.02%88.1%87.7%
100100085.67%86.99%86.58%86.41%
100200086.94%86.29%86.84%86.69%
结果分析

从结果可以看出,迭代次数一定时,一定范围内,随着正则参数的增大,模型预测的准确率会上升,但是超过一定范围,模型性能会下降,可能是正则参数过大导致模型欠拟合了。

当正则参数一定时,随着迭代次数的增大,模型的性能会逐渐变好。

决策树

方法介绍

决策树是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。具体来说,它是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果,本质是一颗由多个判断节点组成的树。

构建决策树的基本步骤为:

  • 开始将所有记录看作一个节点
  • 遍历每个变量的每一种分割方式,找到最好的分割点
  • 分割成两个节点N1和N2
  • 对N1和N2分别继续执行2-3步,直到每个节点不能再分。
实验结果

对于每一个参数设置,做了三次实验,得到的模型准确率分别是ACC_1,ACC_2,ACC_3,平均值是ACC_M。

分割类型损失函数ACC_1ACC_2ACC_3ACC_M
bestgini87.61%87.87%88.03%87.84%
bestentropy88.54%88.40%88.38%88.44%
bestlog_loss88.62%88.34%88.42%88.46%
randomgini86.61%87.09%87.01%86.90%
randomentropy87.55%87.82%88.20%87.86%
randomlog_loss87.87%87.79%88.09%87.92%
结果分析

从结果可以看出,当对节点分割时,选取最好的进行分割比随机分割的性能要好,因为可以获得的信息增益最好,而随机选取没有保障。

使用entropy和log_loss的性能比gini要好,而gini代表基尼系数,entropy代表信息增益,因此选择跟信息增益有关的损失更能提高决策树的性能。

神经元网络,使用简单的卷积神经网络

方法介绍

卷积神经网络(CNN),是一种专门用来处理具有类似网格结构的数据的神经网络。卷积网络是指那些至少在网络的一层中使用卷积运算来替代一般的矩阵乘法运算的神经网络。

卷积神经网络的基本结构由以下几个部分组成:输入层(input layer),卷积层(convolution layer),池化层(pooling layer),激活函数层和全连接层(full-connection layer)。

  • 卷积层:对图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的卷积操作
  • 池化层:池化操作将输入矩阵某一位置相邻区域的总体统计特征作为该位置的输出,主要有平均池化(Average Pooling)、最大池化(Max Pooling)等。简单来说池化就是在该区域上指定一个值来代表整个区域。
  • 激活函数:激活函数(非线性激活函数,如果激活函数使用线性函数的话,那么它的输出还是一个线性函数。)但使用非线性激活函数可以得到非线性的输出值。
  • 全连接层:在全连接层中,每个神经元都与前一层中的所有神经元相连,因此它的输入是一个向量,输出也是一个向量。它对提取的特征进行非线性组合以得到输出。全连接层本身不具有特征提取能力,而是使得目标特征图失去空间拓扑结构,被展开为向量。
实验结果

迭代次数为epoch=10,使用带动量的随机梯度下降(SGD)进行优化,损失函数是交叉熵损失。

使用的卷积神经网络含有两层(含有卷积层,池化层,ReLU激活函数和批归一化层)和一个全连接层,输出的特征维度为10,因为MINIST只有10类。

批处理大小学习率ACC
640.199.03%
640.0198.95%
640.00198.09%
1280.199.16%
1280.0198.95%
1280.00197.35%
1280.0299.02%
1280.00298.12%
结果分析

从结果可以看出,当批处理大小相同时,学习率为0.1时性能最好,之后随着学习率的减小模型的性能逐渐降低。

当学习率一致时,大多数情况下,批处理大小增加模型的性能也会更好,但有些情况不是,如学习率等于0.001时,此时需要将学习率扩大2倍(跟批处理大小增加的倍数一致),模型的性能才会比之前更好。

代码

线性SVM和决策树

# -*- encoding: utf-8 -*-
"""
File machine_learning_methods.py
Created on 2024/1/20 18:55
Copyright (c) 2024/1/20
@author: 
"""
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from load_minist import load_minist_dataif __name__ == '__main__':minist_path = "./datasets/mnist-original.mat"method_type = "linear_svm"X_data, Y_data = load_minist_data(minist_path)# 数据规范化scaler = StandardScaler()X = scaler.fit_transform(X_data)# 分割得到训练和测试数据集X_train, X_test, Y_train, Y_test = train_test_split(X_data, Y_data, test_size=10000, random_state=42)print(f"Train data size:{X_train.shape}")print(f"Test data size:{X_test.shape}")if method_type == "linear_svm":print("Start training Linear SVM...")# 构建linear svm C表示正则项的权重l_svm = svm.LinearSVC(C = 10, max_iter=2000)l_svm.fit(X_train, Y_train)print("Training over!")print("The function is:")print(f"w:{l_svm.coef_}")print(f"b:{l_svm.intercept_}")print("Start testing...")# 打印模型的精确度print(f"{l_svm.score(X_test, Y_test) * 100}%")elif method_type == "kernel_svm":print("Start training Kernel SVM...")# 构建linear svm C表示正则项的权重k_svm = svm.SVC(C=100, max_iter=1000)k_svm.fit(X_train, Y_train)print("Training over!")print("Start testing...")# 打印模型的精确度print(f"{k_svm.score(X_test, Y_test) * 100}%")elif method_type == "decision_tree":print("Start training Decision Tree...")# 构建决策树d_tree = DecisionTreeClassifier(criterion = "gini", splitter = "best")d_tree.fit(X_train, Y_train)print("Training over!")print("Start testing...")# 打印模型的精确度print(f"{d_tree.score(X_test, Y_test) * 100}%")

卷积神经网络

# -*- encoding: utf-8 -*-
"""
File neural_net.py
Created on 2024/1/20 18:55
Copyright (c) 2024/1/20
@author: 
"""
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms# 设计模型
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.block1 = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=10, kernel_size=5),nn.MaxPool2d(kernel_size=2),nn.ReLU(True),nn.BatchNorm2d(10),)self.block2 = nn.Sequential(nn.Conv2d(in_channels=10, out_channels=20, kernel_size=5),nn.MaxPool2d(kernel_size=2),nn.ReLU(True),nn.BatchNorm2d(20),)# 输出10个类别self.fc = nn.Sequential(nn.Flatten(),nn.Linear(in_features=320, out_features=10))def forward(self, x):# x: B C=10 H=12 W=12x = self.block1(x)x = self.block2(x)x = self.fc(x)return xdef construct_data_loader(batch_size):# 数据的归一化transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])# 训练集train_dataset = datasets.MNIST(root='./datasets', train=True, transform=transform, download=True)train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)# 测试集test_dataset = datasets.MNIST(root='./datasets', train=False, transform=transform, download=True)test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)return train_loader, test_loaderdef train_model(train_loader):for (images, target) in train_loader:# images shape: B C=1 H Woutputs = model(images)loss = criterion(outputs, target)optimizer.zero_grad()loss.backward()optimizer.step()def test_model(test_loader):correct, total = 0, 0with torch.no_grad():for (images, target) in test_loader:outputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += target.size(0)correct += (predicted == target).sum().item()print('[%d / %d]: %.2f %% ' % (i + 1, epoch, 100 * correct / total))if __name__ == '__main__':# 定义超参数# 批处理大小batch_size = 128# 学习率lr = 0.002# 动量momentum = 0.5# 训练的epoch数epoch = 10# 构建模型model = Net()# 损失函数和优化器criterion = nn.CrossEntropyLoss()optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum)train_loader, test_loader = construct_data_loader(batch_size)for i in range(epoch):# 训练train_model(train_loader)# 测试test_model(test_loader)

参考资料

基于决策树模型和支持向量机模型的手写数字识别_手写数字识别决策树-CSDN博客

ResNet18实现——MNIST手写数字识别(突破0.995)_mnist resnet-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/250481.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot+Redis如何实现用户输入错误密码后限制登录(含源码)

点击下载《SpringBootRedis如何实现用户输入错误密码后限制登录(含源码)》 1. 引言 在当今的网络环境中,保障用户账户的安全性是非常重要的。为了防止暴力破解和恶意攻击,我们需要在用户尝试登录失败一定次数后限制其登录。这不…

51单片机学习笔记 --步进电机驱动说明

文章目录 工作原理代码编写驱动方式全步进驱动半步进驱动微步进驱动 工作原理 工作原理简要说明,和单片机一起配合使用的步进电机多为28BYJ28 五线四相步进电机,配合ULN2003驱动板进行控制,如图所示,对于扭矩、精度要求较高的还有…

如何手机搜中国大学mooc答案?推荐9个搜题软件和学习工具 #经验分享#其他

以下软件拥有强大的搜索功能,能够快速找到与题目相关的资料和答案,让大学生们更容易理解和掌握知识点。 1.Google翻译 可提供简体中文和另外 100 多种语言之间的互译功能,可让您即时翻译字词、短语和网页内容 Google的免费翻译服务 2.大鱼…

嵌入式软件中常见的 8 种数据结构

数据结构是一种特殊的组织和存储数据的方式,可以使我们可以更高效地对存储的数据执行操作。数据结构在计算机科学和软件工程领域具有广泛而多样的用途。 几乎所有已开发的程序或软件系统都使用数据结构。此外,数据结构属于计算机科学和软件工程的基础。当…

C语言之位段练习

一、题目 下面代码的运行结果为? int main() {unsigned char puc[4];struct tagPIM{unsigned char ucPim1;unsigned char ucData0 : 1;unsigned char ucData1 : 2;unsigned char ucData2 : 3;}*pstPimData;pstPimData (struct tagPIM*)puc;memset(puc,0,4);pstPi…

Unity_使用Shader实现玻璃和镜面效果

效果图如下: 玻璃效果图 镜面效果图 Step1 搭建场景→镜子使用Quad代替,放置在需要反射的墙面→创建新的材质和Shader Step2 墙壁外创建Camera,用来渲染物体后方的视图→创建RenderTexture,赋于该相机 Step3 Shader的编写如下…

​(三)hadoop之hive的搭建1

下载 访问官方网站https://hive.apache.org/ 点击downloads 点击Download a release now! 点击https://dlcdn.apache.org/hive/ 选择最新的稳定版 复制最新的url 在linux执行下载命令 wget https://dlcdn.apache.org/hive/hive-3.1.3/apache-hive-3.1.3-bin.tar.gz 2.解压…

Visual Studio 2022 查看类关系图

这里写自定义目录标题 右键要查看的项目 -“查看”-“查看类图”效果展示: 原文地址 www.cnblogs.com 步骤1:勾选扩展开发 步骤2: 勾选类设计器 右键要查看的项目 -“查看”-“查看类图” 效果展示:

react 之 useCallback

简单讲述下useCallback的使用方法,useCallback也是用来缓存的,只不过是用于做函数缓存 // useCallbackimport { memo, useCallback, useState } from "react"const Input memo(function Input ({ onChange }) {console.log(子组件重新渲染了…

AJAX-认识URL

定义 概念:URL就是统一资源定位符,简称网址,用于访问网络上的资源 组成 协议 http协议:超文本传输协议,规定浏览器和服务器之间传输数据的格式;规定了浏览器发送及服务器返回内容的格式 协议范围&#xf…

vue yarn certificate has expired

背景:我在用ant design pro框架进行初始化时,安装脚手架时,安装yarn时显示报错 原因分析:查了很久的资料,这种情况应该是开了服务器代理访问导致ssl安全证书失效了 解决办法: 在终端输入:yarn…

2023年度总结 | 关于意义,爱与回望——写给清醒又无知的20岁

Hi,大家好,我是半亩花海,一名再普通不过的大学生。2023年,20岁,充实而零乱的一年,清醒又无知的一年。年末,最近的一些事儿也让我逐渐地有感而发,心静,除杂,思…

【前端web入门第三天】02 CSS字体和文本

文章目录: 1.字体 1.1 字体大小 1.2 字体粗细 1.3 字体样式 1.4 行高 1.5 字体族 1.6 font 复合属性 2. 文本 2.1 文本缩进2.2 文本对齐方式2.3 文本修饰线2.4 color文字颜色 1.字体 1.1 字体大小 属性名: font-size属性值:文字尺寸,PC端网页最常用的单位px …

Python算法100例-1.2 兔子产子

完整源代码项目地址,关注博主私信’源代码’后可获取 1.问题描述 有一对兔子,从出生后的第3个月起每个月都生一对兔子。小兔子长到第3个月后每个月又生一对兔子,假设所有的兔子都不死,问30个月内每个月的兔子总对数为…

百无聊赖之JavaEE从入门到放弃(十九)容器之List

目录 一.容器简介 二.容器的结构 三.Collection接口介绍 四.List接口介绍 五.ArrayList 1.基本操作 2.索引操作 3.ArrayList的并集、交集、差集 六.Vector容器 七.LinkedList 一.容器简介 容器,是用来容纳物体、管理物体。生活中 , 我们会用到各种各样的…

Yalmip学习笔记

这里写自定义目录标题 基本用法变量定义关于大MBilevel programming 注:这篇文章主要是留给自己查漏补缺的,所以从来没有使用过yalmip的读者看着会觉得跳来跳去。 基本用法 建模开始前,使用yalmip(clear)清空Yalmip的内部数据库。 下面是一个…

回归预测 | Matlab实现CPO-BiLSTM【24年新算法】冠豪猪优化双向长短期记忆神经网络多变量回归预测

回归预测 | Matlab实现CPO-BiLSTM【24年新算法】冠豪猪优化双向长短期记忆神经网络多变量回归预测 目录 回归预测 | Matlab实现CPO-BiLSTM【24年新算法】冠豪猪优化双向长短期记忆神经网络多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现CPO-B…

real-time-emotion-detection 排坑记录

real-time-emotion-detection 排坑记录 任务踩坑回顾CV2包版本问题症状描述解决方法 模型文件路径问题症状描述解决办法 tensorflow版本问题症状描述解决办法 其他 任务 我之前跑了一个CNN情绪识别的开源代码,现在我想尝试把他用到我的另一个项目里。但当时那个项目…

「效果图渲染」效果图与3D影视动画渲染平台

效果图渲染和3D影视动画渲染都是视觉图像渲染的领域应用。效果图渲染主要服务于建筑、室内设计和产品设计等行业,这些领域通常对视觉呈现的精度和细节有较高要求。与之相比,3D影视动画渲染则普遍应用于电影、电视、视频游戏和广告等媒体领域,…

蓝桥杯---垒骰子

赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!我们先来规范一下骰子:1的对面是4&…