挑战杯 python+深度学习+opencv实现植物识别算法系统

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的植物识别算法研究与实现

在这里插入图片描述

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


2 相关技术

2.1 VGG-Net模型

Google DeepMind公司研究员与牛津大学计算机视觉组在2014年共同研发出了一种全新的卷积神经网络–VGG-
Net。在同年举办的ILSVRC比赛中,该网络结构模型在分类项目中取得了十分出色的成绩,由于其简洁性和实用性,使得其在当时迅速,飞快地成为了最受欢迎的卷积神经网络模型。VGG-
Net卷积神经网络在近年来衍生出了A-
E七种不同的层次结构,本次研究使用其中的D结构,也就是VGG-16Net结构,该结构中包含了13个卷积层,5个池化层和3个全连接层。针对所有的卷积层,使用相同的5x5大小的卷积核,针对所有的池化层,使用相同的3x3大小的池化核。VGG-
Net结构如图所示。

在这里插入图片描述

2.2 VGG-Net在植物识别的优势

在针对植物识别问题上,VGG-Net有着一些相较于其他神经网络的优势,主要包括以下几点:

(1) 卷积核,池化核大小固定

网络中所有的卷积核大小固定为3x3,所有的池化核大小固定为5x5。这样在进行卷积和池化操作的时候,从数据中提取到的特征更加明显,同时在层与层的连接时,信息的丢失会更少,更加方便后续对于重要特征的提取和处理。

(2) 特征提取更全面

VGG-
Net网络模型中包含了13个卷积层。卷积层数目越多,对于特征的提取更加的全面。由于需要对于植物的姿态、颜色等进行判定,植物的特征较多,需要在提取时更加的全面,细致,才有可能得到一个更加准确的判定。VGG-
Net符合条件。

在这里插入图片描述

(3) 网络训练误差收敛速度较快

VGG-
Net网络在训练时收敛速度相对较快,能够较快地得到预期的结果。具有这一特点的原因有两个,一个是网络中每一个卷积层和池化层中的卷积核大小与池化核大小固定,另一个就是对于各个隐藏层的参数初始化方法使用专门针对ReLU激活函数的Kaiming正态初始化方法。

3 VGG-Net的搭建

本次研究基于Pytorch深度学习框架进行网络的搭建,利用模块化的设计思想,构建一个类,来对于整个的网络进行结构上的封装。这样搭建的好处是可以隐藏实现的内部细节,提高代码的安全性,增强代码的复用效率,并且对于一些方法,通过在内部集成,可以方便之后对于其中方法的调用,提升代码的简洁性。
在网络搭建完成后,将数据集传入网络中进行训练,经过一段时间后即可得到植物识别的分类识别结果。

3.1 Tornado简介

Tornado全称Tornado Web
Server,是一个用Python语言写成的Web服务器兼Web应用框架,由FriendFeed公司在自己的网站FriendFeed中使用,被Facebook收购以后框架在2009年9月以开源软件形式开放给大众。

(1) 优势

  • 轻量级web框架
  • 异步非阻塞IO处理方式
  • 出色的抗负载能力
  • 优异的处理性能,不依赖多进程/多线程,一定程度上解决C10K问题
  • WSGI全栈替代产品,推荐同时使用其web框架和HTTP服务器

(2) 关键代码

class MainHandler(tornado.web.RequestHandler):def get(self):
​            self.render("index.html")def post(self):keras.backend.clear_session()img = Image.open(BytesIO(self.request.files['image'][0]['body']))img = imgb_img = Image.new('RGB', (224, 224), (255, 255, 255))size = img.sizeif size[0] >= size[1]:rate = 224 / size[0]new_size = (224, int(size[1] * rate))img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (0, random.randint(0, 224 - new_size[1])))else:rate = 224 / size[1]new_size = (int(size[0] * rate), 224)img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (random.randint(0, 224 - new_size[0]), 0))if self.get_argument("method", "mymodel") == "VGG16":Model = load_model("VGG16.h5")else:Model = load_model("InceptionV3.h5")data = orc_img(Model,b_img)self.write(json.dumps({"code": 200, "data": data}))def make_app():template_path = "templates/"static_path = "./static/"return tornado.web.Application([(r"/", MainHandler),], template_path=template_path, static_path=static_path, debug=True)​    
​    def run_server(port=8000):
​        tornado.options.parse_command_line()
​        app = make_app()
​        app.listen(port)print("\n服务已启动 请打开 http://127.0.0.1:8000 ")
​        tornado.ioloop.IOLoop.current().start()

4 Inception V3 神经网络

GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception
的结构,用于增加网络深度和宽度,提高深度神经网络性能。从Inception V1到Inception
V4有4个更新版本,每一版的网络在原来的基础上进行改进,提高网络性能。

4.1 网络结构

在这里插入图片描述

inception结构的作用(inception的结构和作用)

作用:代替人工确定卷积层中过滤器的类型或者确定是否需要创建卷积层或者池化层。即:不需要人为决定使用什么过滤器,是否需要创建池化层,由网络自己学习决定这些参数,可以给网络添加所有可能值,将输入连接起来,网络自己学习需要它需要什么样的参数。

inception主要思想

用密集成分来近似最优的局部稀疏解(如上图)

  • 采用不同大小的卷积核意味着有不同大小的感受野,最后的拼接意味着不同尺度特征的融合。
  • 之所以卷积核大小采用1x1、3x3和5x5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定padding = 0、1、2,采用same卷积可以得到相同维度的特征,然后这些特征直接拼接在一起。
  • 很多地方都表明pooling挺有效,所以Inception里面也嵌入了pooling。
  • 网络越到后面特征越抽象,且每个特征涉及的感受野也更大,随着层数的增加,3x3和5x5卷积的比例也要增加。
  • 最终版inception,加入了1x1 conv来降低feature map厚度。

5 开始训练

5.1 数据集

训练图像按照如下方式进行分类,共分为9文件夹。

在这里插入图片描述

5.2 关键代码

   from keras.utils import Sequenceimport math​    class SequenceData(Sequence):def __init__(self, batch_size, target_size, data):# 初始化所需的参数self.batch_size = batch_sizeself.target_size = target_sizeself.x_filenames = datadef __len__(self):# 让代码知道这个序列的长度num_imgs = len(self.x_filenames)return math.ceil(num_imgs / self.batch_size)def __getitem__(self, idx):# 迭代器部分batch_x = self.x_filenames[idx * self.batch_size: (idx + 1) * self.batch_size]imgs = []y = []for x in batch_x:img = Image.open(x)b_img = Image.new('RGB', self.target_size, (255, 255, 255))size = img.sizeif size[0] >= size[1]:rate = self.target_size[0] / size[0]new_size = (self.target_size[0], int(size[1] * rate))img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (0, random.randint(0, self.target_size[0] - new_size[1])))else:rate = self.target_size[0] / size[1]new_size = (int(size[0] * rate), self.target_size[0])img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (random.randint(0, self.target_size[0] - new_size[0]), 0))img = b_imgif random.random() < 0.1:img = img.convert("L").convert("RGB")if random.random() < 0.2:img = img.rotate(random.randint(0, 20))  # 随机旋转一定角度if random.random() < 0.2:img = img.rotate(random.randint(340, 360))  # 随 旋转一定角度imgs.append(img.convert("RGB"))x_arrays = 1 - np.array([np.array(i)  for i in imgs]).astype(float) / 255  # 读取一批图片batch_y = to_categorical(np.array([labels.index(x.split("/")[-2]) for x in batch_x]), len(labels))return x_arrays, batch_y​    

5.3 模型预测

利用我们训练好的 vgg16.h5 模型进行预测,相关代码如下:

    def orc_img(model,image):
​        img =np.array(image)
​        img = np.array([1 - img.astype(float) / 255])
​        predict = model.predict(img)
​        index = predict.argmax()print("CNN预测", index)
​    target = target_name[index]index2 = np.argsort(predict)[0][-2]target2 = target_name[index2]index3 = np.argsort(predict)[0][-3]target3 = target_name[index3]return {"target": target,"predict": "%.2f" % (float(list(predict)[0][index]) * 64),"target2": target2,"predict2": "%.2f" % (float(list(predict)[0][index2]) * 64),}

6 效果展示

6.1 主页面展示

在这里插入图片描述

6.2 图片预测

在这里插入图片描述

6.3 三维模型可视化

学长在web页面上做了一个三维网络结构可视化功能,可以直观的看到网络模型结构

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/253891.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2.3_9 吸烟者问题

2.3_9 吸烟者问题 问题描述 问题分析 假设一个系统有三个抽烟者进程和一个供应者进程。每个抽烟者不停地卷烟并抽掉它&#xff0c;但是要卷起并抽掉一支烟&#xff0c;抽烟者需要有三种材料&#xff1a;烟草、纸和胶水。三个抽烟者中&#xff0c;第一个拥有烟草、第二个拥有纸…

彩虹系统7.0免授权+精美WAP端模板源码

最低配置环境 PHP7.2 1、上传源码到网站根目录&#xff0c;导入数据库文件 2、修改数据库配置文件&#xff1a;/config.php 3、后台&#xff1a;/admin 账号&#xff1a; 4、前台用户&#xff1a;123456 密码&#xff1a;1234561

目标检测:2如何生成自己的数据集

目录 1. 数据采集 2. 图像标注 3. 开源已标记数据集 4. 数据集划分 参考&#xff1a; 1. 数据采集 数据采集是深度学习和人工智能任务中至关重要的一步&#xff0c;它为模型提供了必要的训练样本和测试数据。在实际应用中&#xff0c;数据采集的方法多种多样&#xff0c;每…

C语言--------指针(1)

0.指针&指针变量 32位平台&#xff0c;指针变量是4个字节&#xff08;32bit/84)--------x86 64位平台&#xff0c;指针变量是8个字节&#xff08;64bit/88)--------x64 编号指针地址&#xff1b;我们平常讲的p是指针就是说p是一个指针变量&#xff1b; ************只要…

VR全景技术可以应用在哪些行业,VR全景技术有哪些优势

引言&#xff1a; VR全景技术&#xff08;Virtual Reality Panorama Technology&#xff09;是一种以虚拟现实技术为基础&#xff0c;通过360度全景影像、立体声音、交互元素等手段&#xff0c;创造出沉浸式的虚拟现实环境。该技术不仅在娱乐领域有着广泛应用&#xff0c;还可…

操作系统透视:从历史沿革到现代应用,剖析Linux与网站服务架构

目录 操作系统 windows macos Linux 服务器搭建网站 关于解释器的流程 curl -I命令 名词解释 dos bash/terminal&#xff0c;(终端) nginx/apache&#xff08;Linux平台下的&#xff09; iis&#xff08;Windows平台下的&#xff09; GUI(图形化管理接口&#xff…

基于SpringBoot和PostGIS的震中影响范围可视化实践

目录 前言 一、基础数据 1、地震基础信息 2、全国行政村 二、Java后台服务设计 1、实体类设计 2、Mapper类设计 3、控制器设计 三、前端展示 1、初始化图例 2、震中位置及影响范围标记 3、行政村点查询及标记 总结 前言 地震等自然灾害目前还是依然不能进行准确的预…

日志报错 git -c dif.mnemonicprefix=false -c core.guotepath=false 解决方法

前言: 在进行下面操作前,必须确保,你是否安装了Git。 查看Git 在命令行窗口中输入`git --version`: 如果这个命令成功显示了Git的版本信息,这表明Git已经被安装。 1. 使用Sourcetree SourceTree 是 Windows 和Mac OS X 下免费的 Git 和 Hg 客户端…

vite项目配置根据不同的打包环境使用不同的请求路径VITE_BASE_URL,包括报错解决

vite环境配置可以看官方文档&#xff1a;环境变量和模式 | Vite 官方中文文档 创建环境配置文件 在项目根目录下面创建.env和.env.production文件&#xff0c;.env是开发环境使用的&#xff0c;.env.production是生产环境使用的。 .env文件&#xff1a; # 基本环境 VITE_APP…

MySQL篇----第七篇

系列文章目录 文章目录 系列文章目录前言一、水平分区二、分库分表之后,id 主键如何处理三、存储过程(特定功能的 SQL 语句集)前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你…

将xyz格式的GRACE数据转成geotiff格式

我们需要将xyz格式的文件转成geotiff便于成图&#xff0c;或者geotiff转成xyz用于数据运算&#xff0c;下面介绍如何实现这一操作&#xff0c;采用GMT和matlab两种方法。 1.GMT转换 我们先准备一个xyz文件&#xff0c;这里是一个降水文件。在gmt中采用以下的语句实现xyz转grd…

DevOps落地笔记-20|软件质量:决定系统成功的关键

上一课时介绍通过提高工程效率来提高价值交付效率&#xff0c;从而提高企业对市场的响应速度。在提高响应速度的同时&#xff0c;也不能降低软件的质量&#xff0c;这就是所谓的“保质保量”。具备高质量软件&#xff0c;高效率的企业走得更快更远。相反&#xff0c;低劣的软件…

Linux的进程信号

注意&#xff1a;首先需要提醒一个事情&#xff0c;本节提及的进程信号和下节的信号量没有任何关系&#xff0c;请您区分对待。 1.信号概念 1.1.生活中的信号 我们在生活中通过体验现实&#xff0c;记忆了一些信号和对应的处理动作&#xff0c;这意味着信号有以下相关的特点&…

Pandas文本数据处理大全:类型判断、空白字符处理、拆分与连接【第67篇—python:文本数据】

文章目录 Pandas文本数据处理大全&#xff1a;类型判断、空白字符处理、拆分与连接1. 判断文本数据类型2. 去除空白字符3. 文本数据拆分4. 文本数据连接5. 文本数据替换6. 文本数据匹配与提取7. 文本数据的大小写转换8. 文本数据的长度计算9. 文本数据的排序10. 文本数据的分组…

大数据企业应用场景分析

目录 一、企业分析 1.1 企业领域维度分析 1.2 技术服务型维度分析 1.3 细分领域维度分析 二、大数据应用场景 2.1 数据分析 2.2 智能推荐 2.3 产品/流程优化 2.4 异常监测 2.5 智能管理 2.6 人工智能和机器学习 三、总结 前言&#xff1a;想讲清楚大数据应用对企业…

(4)【Python数据分析进阶】Machine-Learning模型与算法应用-回归、分类模型汇总

线性回归、逻辑回归算法应用请参考: https://codeknight.blog.csdn.net/article/details/135693621https://codeknight.blog.csdn.net/article/details/135693621本篇主要介绍决策树、随机森林、KNN、SVM、Bayes等有监督算法以及无监督的聚类算法和应用PCA对数据进行降维的算法…

C语言笔试题之实现C库函数 strstr()(设置标志位)

实例要求&#xff1a; 1、请你实现C库函数strstr()&#xff08;stdio.h & string.h&#xff09;&#xff0c;请在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标&#xff08;下标从 0 开始&#xff09;&#xff1b;2、函数声明&#xff1a;int strStr(char* h…

ubuntu20安装mongodb

方法一&#xff1a;直接安装(命令是直接从mongo官网Install MongoDB Community Edition on Ubuntu — MongoDB Manual复制的&#xff09; cat /etc/lsb-release sudo apt-get install -y gnupg curl curl -fsSL https://www.mongodb.org/static/pgp/server-7.0.asc | \sudo gp…

小程序中封装下拉选择框

小程序中没有现成的下拉选择组件&#xff0c;有个picker组件&#xff0c;但是是底部弹出的&#xff0c;不满足我的需求&#xff0c;所以重新封装了一个。 封装的下拉组件 html部分&#xff1a; <view class"select_all_view"><!-- 内容说明&#xff0c;可…

中小型网络系统总体规划与设计方法

目录 1.基于网络的信息系统基本结构 2.网络需求调研与系统设计原则 3.网络用户调查 4.网络节点地理位置分布情况 5.网络需求详细分析 6.应用概要分析 7.网络工程设计总体目标与设计原则 8.网络结构与拓扑构型设计方法 9.核心层网络结构设计 10.接入核心路由器 11.汇聚…