基于图像掩膜和深度学习的花生豆分拣(附源码)

目录

项目介绍

图像分类网络构建

处理花生豆图片完成预测


项目介绍

这是一个使用图像掩膜技术和深度学习技术实现的一个花生豆分拣系统

我们有大量的花生豆图片,并以及打好了标签,可以看一下目录结构和几张具体的图片

 

同时我们也有几张大的图片,里面有若干花生豆,我们要做的任务就是将花生豆框住并且实现分类,可以看一下这些图片 

图像分类网络构建

这部分的内容和我上一篇博客几乎大同小异,就是把最后的分类个数和类别映射换了换,掌握了上一个项目,这部分相信也会理解的很快,这里附上网址并做简单的回顾

kaggle实战图像分类-Intel Image Classification(附源码)-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/weixin_62428212/article/details/136059443?spm=1001.2014.3001.5501

1,数据集加载

2,构建网络

3,定义超参数训练网络

这里小编使用的是resnet18这个网络,因为花生豆数据集的训练,一不小心就会过拟合,用一些更深更强的网络很容易导致过拟合,resnet18好像也有点过拟合,这里附上训练结果图片

处理花生豆图片完成预测

我们训练好网络后,并不能直接将网络用于预测整个花生豆的大图,因为里面有很多的花生豆,所以我们可以取出并预测,那么怎么单独取出来呢,这里用到了掩膜用以分割花生豆(一些注释写在了代码里)

首先导入相应的库和定义一下参数

# -*- coding: GB2312 -*-
import os
import cv2
import numpy as np
import torch
from PIL import Image
from utils.model import ResNet18
from torchvision import transformspath = 'data/pic'
image_path = os.listdir(path)classify = {0: 'baiban', 1: 'bandian', 2: 'famei', 3: 'faya', 4: 'hongpi', 5: 'qipao', 6: 'youwu', 7: 'zhengchang'}transform = transforms.Compose([transforms.Resize((64, 64)),transforms.ToTensor()])net = ResNet18(8)
net.load_state_dict(torch.load('model_weights/ResNet18.pth'))min_size = 30
max_size = 400

然后我们加载整个大图的文件夹并遍历处理每张图片

for i in image_path:img = cv2.imread(os.path.join(path,i))hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)  # 转HSV色彩空间# 定义背景颜色区间(蓝色区间)lower_blue = np.array([100, 100, 8])upper_blue = np.array([255, 255, 255])mask = cv2.inRange(hsv, lower_blue, upper_blue)  # 创建掩膜(在上述颜色范围内(背景)为白色,不在(花生豆)则为黑色)result = cv2.bitwise_and(img, img, mask=mask)  # 根据掩膜提取图像,会将花生豆的部分变为黑色,然后提取出背景部分result = result.astype(np.uint8)_, binary_image = cv2.threshold(result, 1, 255, cv2.THRESH_BINARY)  # 三通道二值化。背景会全为白色,花生豆部分为黑色# 到这里我们就得到了经过掩膜过滤的图片,其中白色的为背景,黑色的为花生豆,我们可以看一下cv2.namedWindow('HSV_Result', cv2.WINDOW_NORMAL)cv2.resizeWindow('HSV_Result', 2840, 1000)cv2.imshow('HSV_Result', binary_image)cv2.waitKey(0)cv2.destroyAllWindows()

我们发现这些花生豆的背景是蓝色的,所以我们创建了一个用以区分背景和花生豆的掩膜用来分割二者,其分割完后的图片为

通过掩膜处理完后,我们可以清晰的观察到图片里的花生豆,后面我们就可以在这幅图片上画出轮廓并分割出花生豆部分依次放入网络预测

# 过滤边框
def delet_contours(contours, delete_list):delta = 0for i in range(len(delete_list)):del contours[delete_list[i] - delta]delta = delta + 1return contoursinverted_image = cv2.cvtColor(binary_image, cv2.COLOR_BGR2GRAY)  # 转灰度图_, binary_image = cv2.threshold(inverted_image, 1, 255, cv2.THRESH_BINARY)  # 单通道二值化contours, hierarchy = cv2.findContours(binary_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)contours = list(contours)delete_list = []for i in range(len(contours)):# 通过框的周长去过滤边框if (cv2.arcLength(contours[i], True) < min_size) or (cv2.arcLength(contours[i], True) > max_size):delete_list.append(i)contours = delet_contours(contours, delete_list)# 遍历每一个框(取出每一个单独的花生豆进行预测)for i in range(len(contours)):x, y, w, h = cv2.boundingRect(contours[i])img_pred = img[y:y+h, x:x+w, :]img_pred = Image.fromarray(img_pred)  # 将numpy数组转为PIL图像对象img_pred = transform(img_pred)  # 调整图像尺寸和转tensor格式img_pred = torch.unsqueeze(img_pred, dim=0)  # 升一个维度pred = torch.argmax(net(img_pred), dim=1)  # 拿到概率最大的分类preds = classify[int(pred)]  # 数字映射为字符串cv2.putText(img, preds, (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 1, cv2.LINE_AA)  # 写类别标签cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 画矩形框cv2.namedWindow('Result', cv2.WINDOW_NORMAL)cv2.resizeWindow('Result',2840,1000)cv2.imshow('Result', img)cv2.waitKey(0)cv2.destroyAllWindows()

展示一下预测结果

小编这里发现这个方法可以预测成功中间大多数的花生豆,但是边缘处的花生豆因不会被画出轮廓故不会被放入网络预测,大体预测的效果还算可以。

源码及数据集请查看:https://github.com/jvyou/Peanut-and-bean-sorting

视频讲解请查看:https://www.bilibili.com/video/BV13F4m1g7Wp/?spm_id_from=333.999.0.0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/254587.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

年假作业day2

1.打印字母图形 #include<stdio.h> #include<string.h> int main(int argc, const char *argv[]) { int i,j; char k; for(i1;i<7;i) { for(j1;j<i;j) { printf("%c",_); } for(j0,…

Javaweb之SpringBootWeb案例之异常处理功能的详细解析

3. 异常处理 3.1 当前问题 登录功能和登录校验功能我们都实现了&#xff0c;下面我们学习下今天最后一块技术点&#xff1a;异常处理。首先我们先来看一下系统出现异常之后会发生什么现象&#xff0c;再来介绍异常处理的方案。 我们打开浏览器&#xff0c;访问系统中的新增部…

ARM PAC/BTI/MTE三剑客精讲与实战

一、PAC指针认证精讲与实战 思考 1、什么是栈溢出攻击&#xff1f;什么是代码重用攻击&#xff1f;区别与联系&#xff1f; 2、栈溢出攻击的软&硬件缓解技术有哪些&#xff1f;在TF-A&OPTEE上的应用&#xff1f; 3、什么是ROP攻击&#xff1f;对ROP攻击的缓解技术&…

idea(2023.3.3 ) spring boot热部署,修改热部署延迟时间

1、添加依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId><optional>true</optional> </dependency>载入依赖 2、设置编辑器 设置两个选项 设置热部署更新延迟时…

LabVIEW热电偶自动校准系统

设计并实现一套基于LabVIEW平台的工业热电偶自动校准系统&#xff0c;通过自动化技术提高校准效率和精度&#xff0c;降低人力成本&#xff0c;确保温度测量的准确性和可靠性。 工业生产过程中&#xff0c;温度的准确测量对产品质量控制至关重要。传统的热电偶校准方式依赖人工…

H12-821_73

73.某台路由器Router LSA如图所示&#xff0c;下列说法中错误的是&#xff1f; A.本路由器的Router ID为10.0.12.1 B.本路由器为DR C.本路由器已建立邻接关系 D.本路由器支持外部路由引入 答案&#xff1a;B 注释&#xff1a; LSA中的链路信息Link ID&#xff0c;Data&#xf…

【大数据】Flink 中的 Slot、Task、Subtask、并行度

Flink 中的 Slot、Task、Subtask、并行度 1.并行度2.Task 与线程3.算子链与 slot 共享资源组4.Task slots 与系统资源5.总结 我们在使用 Flink 时&#xff0c;经常会听到 task&#xff0c;slot&#xff0c;线程 以及 并行度 这几个概念&#xff0c;对于初学者来说&#xff0c;这…

ChatGPT高效提问—prompt常见用法(续篇五)

ChatGPT高效提问—prompt常见用法&#xff08;续篇五&#xff09; 1.1 种子词 ​ 种子词&#xff08;seed word&#xff09;通常指的是在对话中使用的初始提示或关键词&#xff0c;用于引导ChatGPT生成相关回复。种子词可以是一个词、短语或句子&#xff0c;通常与对话的主题…

数据结构——单向链表和双向链表的实现(C语言版)

目录 前言 1. 链表 1.1 链表的概念及结构 1.2 链表的分类 2. 单链表接口实现 2.1 数据结构设计与接口函数声明 2.2 创建结点&#xff0c;打印&#xff0c;查找 2.3 尾插&#xff0c;头插&#xff0c;尾删&#xff0c;头删 2.4 插入或删除 2.4.1在指定位置后 2.4.2在…

LLM大语言模型(六):RAG模式下基于PostgreSQL pgvector插件实现vector向量相似性检索

目录 HightLightMac上安装PostgreSQLDBever图形界面管理端创建DB 使用向量检索vector相似度计算近似近邻索引HNSW近似近邻索引示例 HightLight 使用PostgreSQL来存储和检索vector&#xff0c;在数据规模非庞大的情况下&#xff0c;简单高效。 可以和在线业务共用一套DB&#…

jquery写表格,通过后端传值,并合并单元格

<!DOCTYPE html> <html> <head><title>Table Using jQuery</title><style>#tableWrapper {width: 100%;height: 200px; /* 设置表格容器的高度 */overflow: auto; /* 添加滚动条 */margin-top: -10px; /* 负的外边距值&#xff0c;根据实际…

K8S之标签的介绍和使用

标签 标签定义标签实操1、对Node节点打标签2、对Pod资源打标签查看资源标签删除资源标签 标签定义 标签就是一对 key/value &#xff0c;被关联到对象上。 标签的使用让我们能够表示出对象的特点&#xff0c;比如使用在Pod上&#xff0c;能一眼看出这个Pod是干什么的。也可以用…

Golang的for循环变量和goroutine的陷阱,1.22版本的更新

先来看一段golang 1.22版本之前的for循环的代码 package mainimport "fmt"func main() {done : make(chan bool)values : []string{"chen", "hai", "feng"}for _, v : range values {fmt.Println("start")go func() {fmt.P…

Android:Android Studio安装及环境配置

1开发环境搭建 Android开发需要使用java的jdk环境,所以需要下载JAVA JDK。 1.1安装配置JAVA JDK Java的JDK下载: https://www.oracle.com/technetwork/java/javase/downloads/index.html 配置java的环境变量: JAVA_HOME:java安装路径。 新增环境变量CLASSPATH 在Path环境…

【Linux笔记】动静态库的封装和加载

一、静态库的封装 我们在学习C语言阶段其实就已经知道一个可执行程序的形成过程分为预处理、编译、汇编、链接这四个阶段&#xff0c;而且也知道我们程序中使用的各种库其实是在链接的阶段加载的。 可我们那时候并不知道库是怎么被加载的&#xff0c;或者库是怎么形成的&…

[CUDA手搓]从零开始用C++ CUDA搭建一个卷积神经网络(LeNet),了解神经网络各个层背后算法原理

文章目录 前言一、所需环境二、实现思路2.1. 定义了LeNet网络模型结构&#xff0c;并训练了20次2.2 以txt格式导出训练结果(模型的各个层权重偏置等参数)2.3 (可选)以pth格式导出训练结果&#xff0c;以方便后期调试2.4 C CUDA要做的事 三、C CUDA具体实现3.1 新建.cu文件并填好…

深度学习在知识图谱问答中的革新与挑战

目录 前言1 背景知识2 基于深度学习改进问句解析模型2.1 谓词匹配2.2 问句解析2.3 逐步生成查询图 3 基于深度学习的端到端模型3.1 端到端框架3.2 简单嵌入技术 4 优势4.1 深入的问题表示4.2 实体关系表示深挖4.3 候选答案排序效果好 5 挑战5.1 依赖大量训练语料5.2 推理类问句…

【Linux系统学习】3.Linux用户和权限

Linux用户和权限 1.认知root用户 1.1 root用户&#xff08;超级管理员&#xff09; 无论是Windows、MacOS、Linux均采用多用户的管理模式进行权限管理。 在Linux系统中&#xff0c;拥有最大权限的账户名为&#xff1a;root&#xff08;超级管理员&#xff09; 而在前期&#…

CTF--Web安全--SQL注入之‘绕过方法’

一、什么是绕过注入 众所周知&#xff0c;SQL注入是利用源码中的漏洞进行注入的&#xff0c;但是有攻击手段&#xff0c;就会有防御手段。很多题目和网站会在源码中设置反SQL注入的机制。SQL注入中常用的命令&#xff0c;符号&#xff0c;甚至空格&#xff0c;会在反SQL机制中…

MySQL学习一、库和表的基础操作

目录 一、常用数据类型 1.数值类型 2.字符串类型 3.日期类型 ​二、数据库的基础操作 三、表的基础操作 一、常用数据类型 1.数值类型 数值类型可以指定为无符号&#xff08;unsigned &#xff09;&#xff0c;但不建议取 2.字符串类型 3.日期类型 二、数据库的基础操作…