【大数据】Flink 中的 Slot、Task、Subtask、并行度

Flink 中的 Slot、Task、Subtask、并行度

  • 1.并行度
  • 2.Task 与线程
  • 3.算子链与 slot 共享资源组
  • 4.Task slots 与系统资源
  • 5.总结

我们在使用 Flink 时,经常会听到 taskslot线程 以及 并行度 这几个概念,对于初学者来说,这几个概念以及它们与内存,CPU 之间的关系经常搞不清楚,下面我们就通过这篇文章来弄清楚这些概念。

1.并行度

特定算子的子任务(subtask)的 个数 称之为 并行度parallel)。一般情况下,一个 数据流的并行度 可以认为是其 所有算子中最大的并行度。Flink 中每个算子都可以在代码中通过 .setParallelism(n) 来重新设置并行度,而并行执行的 subtask 要发布到不同的 slot 中去执行。

2.Task 与线程

对于分布式执行的任务,Flink 将算子的 subtasks 链接成 tasks。每个 subtask 由一个线程执行。如下图中样例数据流用 5 个 subtask 执行,因此就有 5 个并行线程。

在这里插入图片描述
上图中,source + map 算子组成一个 subtask,并行度为 2,keyby + window + apply 算子组成一个 subtask,并行度为 2,sink 算子组成一个 subtask,并行度为 1。

3.算子链与 slot 共享资源组

前面提到 Flink 会将算子的 subtask 链接成 task,实际上就是通过算子链操作来实现的。将算子链接成 task 的好处:

  • ✅ 它减少线程间切换、缓冲的开销,并且减少延迟的同时增加整体吞吐量。
  • ✅ 链行为是可以配置的;将两个算子链接在一起能使得它们在同一个线程中执行,从而提升性能。

Flink 默认会将能链接的算子尽可能地进行链接(例如两个 map 转换操作)。 此外, Flink 还提供了对链接更细粒度控制的 API 以满足更多需求。

如果想对整个作业禁用算子链,可以调用 StreamExecutionEnvironment.disableOperatorChaining()。下列方法还提供了更细粒度的控制。需要注意的是, 这些方法只能在 DataStream 转换操作后才能被调用,因为它们只对前一次数据转换生效。例如,可以 someStream.map(...).startNewChain() 这样调用,而不能 someStream.startNewChain() 这样。

另外,一个 slot 共享资源组对应着 Flink 中的一个 slot 槽, 可以根据需要手动地将各个算子隔离到不同的 slot 中。

Transformation
Description
Start new chain以当前 operator 为起点开始新的连接。如下的两个 mapper 算子会链接在一起而 filter 算子则不会和第一个 mapper 算子进行链接。someStream.filter(...).map(...).startNewChain().map(...)
Disable chaining任何算子不能和当前算子进行链接。someStream.map(...).disableChaining()
Set slot sharing group配置算子的资源组。Flink 会将相同资源组的算子放置到同一个 slot 槽中执行,并将不同资源组的算子分配到不同的 slot 槽中,从而实现 slot 槽隔离。如果所有输入操作都在同一个资源组,资源组将从输入算子开始继承。Flink 默认的资源组名称为 default,算子可以显式调用 slotSharingGroup("default") 加入到这个资源组中 .someStream.filter(...).slotSharingGroup("name")

4.Task slots 与系统资源

每个 worker(TaskManager)都是一个 JVM 进程,可以在单独的线程中执行一个或多个 subtask。为了控制一个 TaskManager 中接受多少个 task,就有了所谓的 task slot(至少一个)。

每个 task slot 代表 TaskManager 中 资源的固定子集。例如,具有 3 个 slot 的 TaskManager,会将其托管内存 1 / 3 1/3 1/3 用于每个 slot。分配资源意味着 subtask 不会与其他作业的 subtask 竞争托管内存,而是具有一定数量的保留托管内存。注意此处没有 CPU 隔离;当前 slot 仅分离 task 的托管内存。

通过调整 task slot 的数量,用户可以定义 subtask 如何互相隔离。每个 TaskManager 有一个 slot,这意味着每个 task 组都在单独的 JVM 中运行(例如,可以在单独的容器中启动)。具有多个 slot 意味着更多 subtask 共享同一 JVM。同一 JVM 中的 task 共享 TCP 连接(通过多路复用)和心跳信息。它们还可以共享数据集和数据结构,从而减少了每个 task 的开销。

在这里插入图片描述
上边例子,从图所示 5 个 subtask 用 5 个 task slot 来执行,一定是这样分配的吗?

这个还真不一定,默认情况下,上边例子只需要 2 个 slot 就可以了。

在这里插入图片描述
我们再看另外一个例子,当我们把并行度调大为 6。

在这里插入图片描述
按照并行度拆开这个任务(task),我们发现会有 13 个 subtask,那么是不是就意味着需要 13 个 slot 才能执行该任务呢?

答案是否定的,实际是只需要 6 个 slot 就够了。

为什么会这样呢?我们来看两条规则:

  • 1️⃣ 默认情况下,Flink 允许子任务共享 slot,即使他们是不同任务的子任务。这样的结果就是一个 slot 可以保存作业的整个 pipeline
  • 2️⃣ Task Slot 是静态的概念,指的是 TaskManager 具有的并发执行能力。

在这里插入图片描述
实际上,第一个 slot 会运行 3 个 subtask,也就是执行 3 个线程。

前面也提到了 slot 只是做了内存隔离,并没有做 CPU 隔离,但是 CPU 资源是有限的,所以我们在设置资源参数时,需要考虑一下集群可提供的资源。

在这里插入图片描述
那么问题又来了,上面这个图中所示需要 5 个 task slot,但是默认情况下 Flink 会自动优化成为需要 2 个 slot,如果我们不想使用默认的 slot 个数来执行呢,那就要通过 slot 共享组来实现了。

DataStream<String> inputDataStream = env.socketTextStream(host, port);
DataStream<Tuple2<String, Integer>> resultStream = inputDataStream.flatMap(new WordCount.MyFlatMapper()).slotSharingGroup("green").keyBy(0).sum(1).setParallelism(2).slotSharingGroup("red");resultStream.print().setParallelism(1);

这几行代码几个 subtask?并行度是多少?用几个 task slot

看一下以上代码运行时 Flink Web UI:

在这里插入图片描述
从 Web UI 界面可以看出,该任务被切分成了 5 个子 task,按照最大并行度算子来算,这个任务的并行度应该为 2,那么这 5 个 subtask 占用了几个 slot 呢?

通过设置 slotSharingGroup,是手动干预 slot 分配的手段之一,默认情况下,整个 StreamGraph 都会用一个默认的 default SlotSharingGroup,即所有的 task 都可以共用一个 slot

上面代码里,source 算子并没有显式分配 slot 共享组,所以它将被分在默认的 default 共享组里,而 flatMap 算子被显式指定到了 green 共享组里,聚合算子同样被显式指定到了 red 共享组里,那么最后的 sink 算子呢?注意,默认情况下,每一个算子会与其前一个算子保持在同一个共享组内,所以 sink 算子(也就是上边的打印算子)也会被分配在 red 共享组里,按照 slot 共享组进行分组,每个分组最大的并行度相加,就是这个任务所占用的总共 slot,所以应该是 4 个。

在这里插入图片描述

5.总结

通过上面几个例子,我们已经很清楚的理解这些概念了,总结以下几点:

  • 1️⃣ Flink 中 slot 是任务执行所申请资源的最小单元,同一个 TaskManager 上的所有 slot 都只是做了内存分离,并没有做 CPU 隔离。
  • 2️⃣ 每一个 TaskManager 都是一个 JVM 进程,如果某个 TaskManager 上只有一个 slot,这意味着每个 task 组都在单独的 JVM 中运行,如果有多个 slot 就意味着更多 subtask 共享同一 JVM。
  • 3️⃣ 一般情况下有多少个 subtask,就是有多少个并行线程,而并行执行的 subtask 要发布到不同的 slot 中去执行。
  • 4️⃣ Flink 默认会将能链接的算子尽可能地进行链接,也就是算子链,Flink 会将同一个算子链分组内的 subtask 都发到同一个 slot 去执行,也就是说一个 slot 可能要执行多个 subtask,即多个线程。
  • 5️⃣ Flink 可以根据需要手动地将各个算子隔离到不同的 slot 中。
  • 6️⃣ 一个任务所用的总共 slot 为所有资源隔离组所占用的 slot 之和,同一个资源隔离组内,按照算子的最大并行度来分配 slot

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/254579.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT高效提问—prompt常见用法(续篇五)

ChatGPT高效提问—prompt常见用法&#xff08;续篇五&#xff09; 1.1 种子词 ​ 种子词&#xff08;seed word&#xff09;通常指的是在对话中使用的初始提示或关键词&#xff0c;用于引导ChatGPT生成相关回复。种子词可以是一个词、短语或句子&#xff0c;通常与对话的主题…

数据结构——单向链表和双向链表的实现(C语言版)

目录 前言 1. 链表 1.1 链表的概念及结构 1.2 链表的分类 2. 单链表接口实现 2.1 数据结构设计与接口函数声明 2.2 创建结点&#xff0c;打印&#xff0c;查找 2.3 尾插&#xff0c;头插&#xff0c;尾删&#xff0c;头删 2.4 插入或删除 2.4.1在指定位置后 2.4.2在…

LLM大语言模型(六):RAG模式下基于PostgreSQL pgvector插件实现vector向量相似性检索

目录 HightLightMac上安装PostgreSQLDBever图形界面管理端创建DB 使用向量检索vector相似度计算近似近邻索引HNSW近似近邻索引示例 HightLight 使用PostgreSQL来存储和检索vector&#xff0c;在数据规模非庞大的情况下&#xff0c;简单高效。 可以和在线业务共用一套DB&#…

jquery写表格,通过后端传值,并合并单元格

<!DOCTYPE html> <html> <head><title>Table Using jQuery</title><style>#tableWrapper {width: 100%;height: 200px; /* 设置表格容器的高度 */overflow: auto; /* 添加滚动条 */margin-top: -10px; /* 负的外边距值&#xff0c;根据实际…

K8S之标签的介绍和使用

标签 标签定义标签实操1、对Node节点打标签2、对Pod资源打标签查看资源标签删除资源标签 标签定义 标签就是一对 key/value &#xff0c;被关联到对象上。 标签的使用让我们能够表示出对象的特点&#xff0c;比如使用在Pod上&#xff0c;能一眼看出这个Pod是干什么的。也可以用…

Golang的for循环变量和goroutine的陷阱,1.22版本的更新

先来看一段golang 1.22版本之前的for循环的代码 package mainimport "fmt"func main() {done : make(chan bool)values : []string{"chen", "hai", "feng"}for _, v : range values {fmt.Println("start")go func() {fmt.P…

Android:Android Studio安装及环境配置

1开发环境搭建 Android开发需要使用java的jdk环境,所以需要下载JAVA JDK。 1.1安装配置JAVA JDK Java的JDK下载: https://www.oracle.com/technetwork/java/javase/downloads/index.html 配置java的环境变量: JAVA_HOME:java安装路径。 新增环境变量CLASSPATH 在Path环境…

【Linux笔记】动静态库的封装和加载

一、静态库的封装 我们在学习C语言阶段其实就已经知道一个可执行程序的形成过程分为预处理、编译、汇编、链接这四个阶段&#xff0c;而且也知道我们程序中使用的各种库其实是在链接的阶段加载的。 可我们那时候并不知道库是怎么被加载的&#xff0c;或者库是怎么形成的&…

[CUDA手搓]从零开始用C++ CUDA搭建一个卷积神经网络(LeNet),了解神经网络各个层背后算法原理

文章目录 前言一、所需环境二、实现思路2.1. 定义了LeNet网络模型结构&#xff0c;并训练了20次2.2 以txt格式导出训练结果(模型的各个层权重偏置等参数)2.3 (可选)以pth格式导出训练结果&#xff0c;以方便后期调试2.4 C CUDA要做的事 三、C CUDA具体实现3.1 新建.cu文件并填好…

深度学习在知识图谱问答中的革新与挑战

目录 前言1 背景知识2 基于深度学习改进问句解析模型2.1 谓词匹配2.2 问句解析2.3 逐步生成查询图 3 基于深度学习的端到端模型3.1 端到端框架3.2 简单嵌入技术 4 优势4.1 深入的问题表示4.2 实体关系表示深挖4.3 候选答案排序效果好 5 挑战5.1 依赖大量训练语料5.2 推理类问句…

【Linux系统学习】3.Linux用户和权限

Linux用户和权限 1.认知root用户 1.1 root用户&#xff08;超级管理员&#xff09; 无论是Windows、MacOS、Linux均采用多用户的管理模式进行权限管理。 在Linux系统中&#xff0c;拥有最大权限的账户名为&#xff1a;root&#xff08;超级管理员&#xff09; 而在前期&#…

CTF--Web安全--SQL注入之‘绕过方法’

一、什么是绕过注入 众所周知&#xff0c;SQL注入是利用源码中的漏洞进行注入的&#xff0c;但是有攻击手段&#xff0c;就会有防御手段。很多题目和网站会在源码中设置反SQL注入的机制。SQL注入中常用的命令&#xff0c;符号&#xff0c;甚至空格&#xff0c;会在反SQL机制中…

MySQL学习一、库和表的基础操作

目录 一、常用数据类型 1.数值类型 2.字符串类型 3.日期类型 ​二、数据库的基础操作 三、表的基础操作 一、常用数据类型 1.数值类型 数值类型可以指定为无符号&#xff08;unsigned &#xff09;&#xff0c;但不建议取 2.字符串类型 3.日期类型 二、数据库的基础操作…

VScode为什么选择了Electron,而不是QT?

选择Electron而不是QT可能是基于以下几个原因&#xff1a; Web技术的普及和开发者生态系统&#xff1a;Web技术如HTML、CSS和JavaScript在开发者中非常普及&#xff0c;开发者生态系统庞大且活跃。使用Electron可以利用这些熟悉的Web技术和丰富的开发者社区资源。跨平台支持&am…

Web前端框架-Vue(初识)

文章目录 web前端三大主流框架**1.Angular****2.React****3.Vue**什么是Vue.js 为什么要学习流行框架框架和库和插件的区别一.简介指令v-cloakv-textv-htmlv-pre**v-once**v-onv-on事件函数中传入参数事件修饰符双向数据绑定v-model 按键修饰符自定义按键修饰符别名v-bind(属性…

2.8日学习打卡----初学RabbitMQ(三)

2.8日学习打卡 一.springboot整合RabbitMQ 之前我们使用原生JAVA操作RabbitMQ较为繁琐&#xff0c;接下来我们使用 SpringBoot整合RabbitMQ&#xff0c;简化代码编写 创建SpringBoot项目&#xff0c;引入RabbitMQ起步依赖 <!-- RabbitMQ起步依赖 --> <dependency&g…

Qt未来市场洞察

跨平台开发&#xff1a;Qt作为一种跨平台的开发框架&#xff0c;具有良好的适应性和灵活性&#xff0c;未来将继续受到广泛应用。随着多设备和多平台应用的增加&#xff0c;Qt的前景在跨平台开发领域将更加广阔。 物联网应用&#xff1a;由于Qt对嵌入式系统和物联网应用的良好支…

DVWA-old (老版本)csrf

csrf lowmedium low 打开burp抓包&#xff0c;发现是get请求&#xff0c;尝试在burp中修改密码&#xff0c;发下可以直接修改成功 根据url地址栏中的信息构造链接 &#xff0c;将此链接放在.html为后缀的文件并将此文件放在本地www目录下&#xff0c;在保持登陆状态点击此链接…

C++ 动态规划 记忆化搜索 滑雪

给定一个 R 行 C 列的矩阵&#xff0c;表示一个矩形网格滑雪场。 矩阵中第 i 行第 j 列的点表示滑雪场的第 i 行第 j 列区域的高度。 一个人从滑雪场中的某个区域内出发&#xff0c;每次可以向上下左右任意一个方向滑动一个单位距离。 当然&#xff0c;一个人能够滑动到某相…

Mac使用AccessClient打开Linux堡垒机跳转闪退问题解决

登录公司的服务器需要使用到堡垒机&#xff0c;但是mac使用AccessClient登录会出现问题 最基础的AccessClient配置 AccessClient启动需要设置目录权限&#xff0c;可以直接设置为 权限 777 chmod 777 /Applications/AccessClient.app注: 如果不是这个路径,可以打开终端,将访达中…