详述FlinkSql Join操作

 

FlinkSql 的 Join

Flink 官网将其分为了 Joins 和 Window Joins两个大类,其中里面又分了很多 Join 方式

参考文档:

Joins | Apache Flink

Window JOIN | Apache Flink

Joins

官网介绍共有6种方式:

  1. Regular Join:流与流的 Join,包括 Inner Join、Outer Equal Join

  2. Interval Join:流与流的 Join,两条流一段时间区间内的 Join

  3. Temporal Join:流与流的 Join,包括事件时间,处理时间的 Temporal Join,类似于离线中的快照 Join

  4. Lookup Join:流与外部维表的 Join

  5. Array Expansion:表字段的列转行,类似于 Hive 的 explode 数据炸开的列转行

  6. Table Function:自定义函数的表字段的列转行,支持 Inner Join 和 Left Outer Join

Regular Join

写法上和传统数据库没有区别,关联条件支持等值和非等值Join,有Inner Join 和 Outer Join(Left Join、Right Join、FULL JOIN)

有人问我为什么要特别区分内外连接,后面会用到

内连接是通过匹配两个表之间的共同列,返回满足连接条件的行。只有在连接条件匹配的情况下,才会返回结果。

外连接是在内连接的基础上,还包括了不满足连接条件的行。

SELECT order_id, uid, price, user_name 
FROM order a
Left JOIN user b
ON a.uid = b.uid

顺便了解一下流是怎么 Join 的:

和离线不同,离线是一批数据一起运算的,完成后输出结果

FlinkSql是Dynamic Table的概念,数据在 State 里面,每来一条数据就会对左右两边的数据进行关联

Regular Join 的 State 默认是永久保存的,为了避免 State 无限膨胀,可以根据情况决定是否设置状态清理:table.exec.state.ttl(目前是根据更新时间来判断是否过期,而非访问时间)

再来看看几种 Join ,其中outer Join产生的回撤流是和传统离线方式有很大区别的:

首先不考虑数据源有回撤的情况,Regular Join在 Outer Join 时会产生回撤流,L-左表、R-右表

  •  Inner Join:两条流 Join 到才输出 +[L, R],关联不上不会输出

  •  Left Join:当左流数据到达之后就会直接输出

        可以 Join 到右流则输出 +[L,R],Join 不到右流输出 +[L,null]

        如果之后右流之后数据到达之后,发现左流之前输出过没有 Join 到的数据

        则会发起回撤流,先输出 -[L,null],然后在输出一条 +[L,R]

  •  Right Join:有 Left Join 一样,只是逻辑相反

  • Full Join:和Left原理一样,左流或者右流的数据到达之后,无论有没有 Join 到另外一条流的数据,都会输出,如果一条流的数据到达之后,发现之前另一条流之前输出过没有 Join 到的数据,则会发起回撤流

        对右流来说:Join 到输出 +[L,R],没 Join 到输出 +[null,R],左流数据到达后回撤 -[null,R],输出 +[L,R]

        对左流来说:Join 到输出 +[L,R],没 Join 到输出 +[L,null]),右流数据到达后回撤 -[L, null],输出 +[L,R]     

图解:

Regular Join 过程图

inner join 和 lef join 输出结果示例:

inner join
+I[5, d, 5, f]
+I[5, d, 5, 8]
+I[3, 4, 3, 0]
left join
+I[3, 4ab, null, null]
+I[5, f3c, 5, c05]
+I[5, 6e2, 5, c05]
-D[3, 4ab, null, null]
+I[3, 4ab, 3, 765]

关于 Regular Join 的注意事项:

  • 实时 Regular Join 可以不是 等值 join等值 join 和 非等值 join 区别在于,等值 join 数据 shuffle 策略是 Hash,会按照 Join on 中的等值条件作为 id 发往对应的下游;非等值 join 数据 shuffle 策略是 Global,所有数据发往一个并发,按照非等值条件进行关联

  •  Join 的流程是左流新来一条数据之后,会和右流中符合条件的所有数据做 Join,然后输出,如果是outer join会立即输出之后产生回撤流

  • 流的上游是无限的数据,所以要做到关联的话,Flink 会将两条流的所有数据都存储在 State 中,所以 Flink 任务的 State 会无限增大,因此你需要为 State 配置合适的 TTL,以防止 State 过大。

Interval Join

Interval Join 只支持普通 Append 数据流,不支持含 Retract 的动态表

Interval Join 左右表仅在某个时间范围(给定上界和下界)内进行关联,这个时间区间支持event time 和 processing time两种语义,如果是 event time,会根据区间和Watermark自动清理状态

场景示例:用户下单产生订单信息,用户必须在下单后一个小时以内付款,输出付款的订单信息

SELECTo.orderId,o.productName,p.payType,o.orderTime,cast(payTime as timestamp) as payTime
FROM Orders o 
JOIN Payment p 
ON  o.orderId = p.orderId 
AND p.payTime BETWEEN orderTime AND orderTime + INTERVAL ‘1’ HOUR

Interval Join 几种方式,需要注意 Interval Join 不会产生回撤流:

  •  Inner Join:只有两条流 Join 到才输出,输出 +[L, R]

  • Left Join:和 Regular Join 不同,左流数据到达之后,如果没有 Join 到右流的数据,就会等待(放在 State 中等),如果之后右流之后数据到达之后,发现能和刚刚那条左流数据 Join 到,这时输出 +[L, R]。事件时间中随着 Watermark 的推进(也支持处理时间)。如果发现发现左流 State 中的数据过期了,就把左流中过期的数据从 State 中删除,然后输出 +[L, null](这时候其实已经延迟了),如果右流 State 中的数据过期了,就直接从 State 中删除

  • Right Join:同 Left Join,逻辑相反

  • Full Join:流任务中,左流或者右流的数据到达之后,如果没有 Join 到另外一条流的数据,就会等待(左流放在左流对应的 State 中等,右流放在右流对应的 State 中等),如果之后另一条流数据到达之后,发现能和刚刚那条数据 Join 到,则会输出 +[L, R]。事件时间中随着 Watermark 的推进(也支持处理时间),发现 State 中的数据能够过期了,就将这些数据从 State 中删除并且输出(左流过期输出 +[L, null],右流过期输出 -[null, R]

图解:

图片来自阿里云社区

inner join不用多说,看看 left join 输出结果示例:

+I[6, e, 6, 7]
+I[11, d, null, null]
+I[7, b, null, null]
+I[8, 0, 8, 3]
+I[13, 6, null, null]

关于 Interval Join 的注意事项:

  • 实时 Interval Join 可以不是 等值 join。等值 join 和 非等值 join 区别在于,等值 join 数据 shuffle 策略是 Hash,会按照 Join on 中的等值条件作为 id 发往对应的下游;非等值 join 数据 shuffle 策略是 Global,所有数据发往一个并发,然后将满足条件的数据进行关联输出

  •  outer join 不会产生回撤流,关联不上会在 State 过期时发送数据,会有延迟

Temporal Joins

这种关联方式同样是传统数据库没有的,但是会发现和数仓的拉链表Join有点类似

Temporal Join 支持和 Verisoned Table 进行关联,也支持 event time 和 processing time 两种语义,支持inner join 和 left join 两种方式

事件时间 ,在解决多版本问题时有奇效:

  1.  事件时间的 Temporal Join 一定要给左右两张表都设置 Watermark

  2. 事件时间的 Temporal Join 一定要把 Versioned Table 的主键包含在 Join on 的条件中

--官网案例
CREATE TABLE orders (order_id    STRING,price       DECIMAL(32,2),currency    STRING,order_time  TIMESTAMP(3),WATERMARK FOR order_time AS order_time - INTERVAL '15' SECOND
) WITH (/* ... */);-- 必须定义一个 versioned table
CREATE TABLE currency_rates (currency STRING,conversion_rate DECIMAL(32, 2),update_time TIMESTAMP(3) METADATA FROM `values.source.timestamp` VIRTUAL,WATERMARK FOR update_time AS update_time - INTERVAL '15' SECOND,PRIMARY KEY(currency) NOT ENFORCED
) WITH ('connector' = 'kafka'/* ... */
);SELECT order_id,price,orders.currency,conversion_rate,order_time
FROM orders
LEFT JOIN currency_rates FOR SYSTEM_TIME AS OF orders.order_time
ON orders.currency = currency_rates.currency;order_id  price  currency  conversion_rate  order_time
========  =====  ========  ===============  =========
o_001     11.11  EUR       1.14             12:00:00
o_002     12.51  EUR       1.10             12:06:00

Flink SQL 会为 Versioned Table 维护 Primary Key 下的所有历史时间版本的数据,然后根据左表Orders的事件时间关联到对应时间的 Versioned Table 的汇率

Processing Time,由于是处理时间,只维护了最新的状态数据,不需要关心历史版本的数据,直接根据LeftTable数据到达的时间关联最新的数据

另外还支持 Temporal Table Functionv Join,但是一般不怎么用(至少我基本不这样写)

SELECTo_amount, r_rate
FROMOrders,LATERAL TABLE (Rates(o_proctime))
WHEREr_currency = o_currency

Lookup Join

Lookup Join 通常用于关联外部系统数据(比如Mysql、Hbase等),但是目前只支持 processing time,只能以处理时间关联最新的数据(这个最新是有代价的)

实际用起来其实会发现功能上和 version table 的processing 类似

-- 官网案例,需要定义一个外部存储的表
CREATE TEMPORARY TABLE Customers (id INT,name STRING,country STRING,zip STRING
) WITH ('connector' = 'jdbc','url' = 'jdbc:mysql://mysqlhost:3306/customerdb','table-name' = 'customers'
);-- enrich each order with customer information
SELECT o.order_id, o.total, c.country, c.zip
FROM Orders AS oJOIN Customers FOR SYSTEM_TIME AS OF o.proc_time AS cON o.customer_id = c.id;

待办:lookup支持cache,cache的异步查询原理,数据更新的延迟,参数调优等等

Array Expansion

常见的用法就是类似Spark 的 lateral view expload(arr)

SELECT order_id, tag
FROM Orders CROSS JOIN UNNEST(tagArray) AS t (tag)

Table Function 

其实和 Array Expansion 功能类似,但是 Table Function 本质上是个 UDTF 函数,并且支持自定义函数

Window Joins

见 FlinkSql 窗口函数

语法示例:

SELECT L.num as L_Num, L.id as L_Id, R.num as R_Num, R.id as R_Id,COALESCE(L.window_start, R.window_start) as window_start,COALESCE(L.window_end, R.window_end) as window_end
FROM (SELECT * FROM TABLE(TUMBLE(TABLE LeftTable, DESCRIPTOR(row_time), INTERVAL '5' MINUTES))) L
INNER JOIN (SELECT * FROM TABLE(TUMBLE(TABLE RightTable, DESCRIPTOR(row_time), INTERVAL '5' MINUTES))) R
ON L.num = R.num AND L.window_start = R.window_start AND L.window_end = R.window_end;
SELECT *
FROM (SELECT * FROM TABLE(TUMBLE(TABLE LeftTable, DESCRIPTOR(row_time), INTERVAL '5' MINUTES))) L WHERE EXISTS (SELECT * FROM (SELECT * FROM TABLE(TUMBLE(TABLE RightTable, DESCRIPTOR(row_time), INTERVAL '5' MINUTES))
) R WHERE L.num = R.num AND L.window_start = R.window_start AND L.window_end = R.window_end);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/254678.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开发JSP应用程序

开发JSP应用程序 问题陈述 TecknoSoft Pvt Ltd.公司的首席技术官(CTO)John Barrett将创建一个应用程序的任务委托给了开发团队,该应用程序应在客户访问其账户详细信息前验证其客户ID和密码。客户ID应是数字形式。John希望如果所输入的客户ID或密码不正确,应向客户显示错误…

Qt可视化大屏布局

科技大屏现在非常流行,这里分享一下某个项目的大屏布局(忘了源码是哪个博主的了) 展示 这个界面整体是垂直布局,分为两个部分,标题是一个部分,然后下面的整体是一个layout布局,为另外一部分。 l…

【C语言】深入理解指针

目录 1.字符指针 2.指针数组 3.数组指针 4.数组传参与指针传参 一维数组传参 二维数组传参 一级指针传参 二级指针传参 5.函数指针 6.函数指针数组 7.指向函数指针数组的指针(了解即可) 8.回调函数 回调函数的应用:库函数qsort …

基于ESP8266 开发板(MCU)遥控小车

遥控小车 ​ 遥控界面 ​ 【项目源码】 第一版ESP8266 https://github.com/liyinchigithub/esp8266_car_webServerhttps://github.com/liyinchigithub/esp8266_car_webServer 第二版ESP32 GitHub - liyinchigithub/esp32-wroom-car: 嵌入式单片机 ESP32 Arduino 遥控小车&a…

贵金属交易包括哪些?香港有哪些贵金属交易平台?

随着金融市场的不断发展,贵金属交易作为一种投资方式,越来越受到投资者的关注。贵金属交易不仅具有投资价值,还能够为投资者提供规避风险和保值的工具。本文将介绍贵金属交易的种类和香港的贵金属交易平台。 一、贵金属交易的种类 贵金属交…

红队打靶练习:PHOTOGRAPHER: 1

目录 信息收集 1、arp 2、nmap 3、nikto 目录扫描 1、gobuster 2、dirsearch WEB 信息收集 enum4linux smbclient 8000端口 CMS利用 信息收集 文件上传漏洞利用 提权 信息收集 get user.txt get flag 信息收集 1、arp ┌──(root㉿ru)-[~/kali] └─# a…

小埋的解密游戏的题解

目录 原题描述: 题目描述 输入格式 输出格式 样例 #1 样例输入 #1 样例输出 #1 样例 #2 样例输入 #2 样例输出 #2 提示 主要思路: 代码实现code: 原题描述: 题目描述 小埋最近在玩一个解密游戏,这个游戏…

秒杀相关问题解决

秒杀 超卖问题 如下,我们先来复现问题,抢购秒杀券的代码逻辑也是很简单, 先判断优惠券是否开始了,是的化,判断库存是否充足,如果是的化,扣减库存,最后创建订单 如下是代码 Override Transactional public Result seckillVoucher(Long voucherId) {//1.查询优惠券SeckillVo…

物联网数据隐私保护技术

在物联网(IoT)的世界中,无数的设备通过互联网连接在一起,不断地收集、传输和处理数据。这些数据有助于提高生产效率、优化用户体验并创造新的服务模式。然而,随着数据量的剧增,数据隐私保护成为了一个不能忽…

探索设计模式的魅力:外观模式简化术-隐藏复杂性,提供简洁接口的设计秘密

设计模式专栏:http://t.csdnimg.cn/U54zu 目录 引言:探索简化之路 一、起源和演变 二、场景案例分析 2.1 不用模式实现:用一坨坨代码实现 2.2 问题 2.3 外观模式重构代码 定义 界面 接口 利用外观模式解决问题步骤 外观模式结构和说明 重构…

GEE数据集——全球日光日照地图分布图数据

日光地图分布图数据 在社区和专业地图绘制者的支持下,Daylight 是全球开放地图数据的完整分发版。我们将 OpenStreetMap 等项目的全球贡献者的工作与 Daylight 地图合作伙伴的质量和一致性检查相结合,创建了一个免费、稳定和易于使用的街道尺度全球地图。…

【Larry】英语学习笔记语法篇——换一种方式理解词性

目录 一、换一种方式理解词性 1、名词、形容词、副词,这就是一切 2、词性之间的修饰关系 3、介词其实很简单 形容词属性的介词短语 副词属性的介词短语 ①修饰动词 ②修饰形容词 ③修饰其他副词 一、换一种方式理解词性 1、名词、形容词、副词&#xff0c…

【集合系列】TreeMap 集合

TreeMap 集合 1. 概述2. 方法3. 遍历方式4. 排序方式5. 代码示例16. 代码示例27. 代码示例38. 注意事项9. 源码分析 其他集合类 父类 Map 集合类的遍历方式 TreeSet 集合 具体信息请查看 API 帮助文档 1. 概述 TreeMap 是 Java 中的一个集合类,它实现了 SortedMap…

修改SpringBoot中默认依赖版本

例如SpringBoot2.7.2中ElasticSearch版本是7.17.4 我希望把它变成7.6.1

机器学习算法之支持向量机(SVM)

SVM恐怕大家即使不熟悉,也听说过这个大名吧,这一节我们就介绍这相爱相杀一段内容。 前言:在介绍一个新内容之SVM前,我们不觉映入眼帘的问题是为什么要引入SVM?吃的香,睡的着的情况下,肯定不会是…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Slider组件

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Slider组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Slider组件 滑动条组件,通常用于快速调节设置值,如音量调…

揭开Markdown的秘籍:标题|文字样式|列表

🌈个人主页:聆风吟 🔥系列专栏:Markdown指南、网络奇遇记 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. ⛳️Markdown 标题二. ⛳️Markdown 文字样式2.1 🔔斜体2.2 &…

谷歌发布AI新品Gemini及收费模式;宜家推出基于GPT的AI家装助手

🦉 AI新闻 🚀 谷歌发布AI新品Gemini及收费模式 摘要:谷歌宣布将原有的AI产品Bard更名为Gemini,开启了谷歌的AI新篇章。同时推出了强化版的聊天机器人Gemini Advanced,支持更复杂的任务处理,提供了两个月的…

【Makefile语法 01】程序编译与执行

目录 一、编译原理概述 二、编译过程分析 三、编译动静态库 四、执行过程分析 一、编译原理概述 make: 一个GCC工具程序,它会读 makefile 脚本来确定程序中的哪个部分需要编译和连接,然后发布必要的命令。它读出的脚本(叫做 …

JavaWeb02-MyBatis

目录 一、MyBatis 1.概述 2.JavaEE三层架构简单介绍 (1)表现层 (2)业务层 (3)持久层 3.框架 4.优势 (1)JDBC的劣势 (2)MyBatis优化 5.使用 &#…