互联网加竞赛 基于深度学习的行人重识别(person reid)

文章目录

  • 0 前言
  • 1 技术背景
  • 2 技术介绍
  • 3 重识别技术实现
    • 3.1 数据集
    • 3.2 Person REID
      • 3.2.1 算法原理
      • 3.2.2 算法流程图
  • 4 实现效果
  • 5 部分代码
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的行人重识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 技术背景

行人重识别技术,是智能视频监控系统的关键技术之一,其研宄是针对特定目标行人的视频检索识别问题。行人再识别是一种自动的目标判定识别技术,它综合地运用了计算机视觉技术、机器学习、视频处理、图像分析、模式识别等多种相关技术于监控系统中,其主要描述的是在多个无重叠视域的摄像头监控环境之下,通过相关算法判断在某个镜头下出现过的感兴趣的目标人物是否在其他摄像头下再次出现。

2 技术介绍

在视频监控系统中,行人再识别任务的整体框架如下图所示:
—个监控系统由多个视域不相交的监控摄像头组成,摄像机的位置可以随时更改,同时也可以随时增加或减少摄像机。不两监控摄像头所摄取的画面、视角等各不相同。在这样的监控系统中,对行人的动向监测是,至关重要的。

对行人的监控主要基于以下三个基本的模块:

在这里插入图片描述

  • 行人检测:
    行人检测的目标是在图片中定位到行人的具体位置。这一步骤仅涉及到对于静止的单张图片的处理,而没有动态的处理,没有时间序列上的相关分析。

  • 行人轨迹跟踪:
    行人轨迹跟踪的主要任务是在一段时间内提供目标任务的位置移动信息。与行人检测不同,轨迹跟踪与时间序列紧密相关。行人轨迹跟踪是在行人检测的基础上进行的。

  • 行人再识别:
    行人再识别任务的目标是在没有相重合视域的摄像头或摄像机网络内的不同背景下的许多行人中中识别某个特定行人。行人再识别的分析基于行人检测和轨迹跟踪的结果。其主要步骤首先是检测和跟踪视频序列中的行人,从而提取行人的特征,建立构建模型所需的行人特征集数据库。


在此基础上,用训练出的模型进行学习从而判断得出某个摄像头下的行人与另一摄像头下的目标人物为同一个人。在智能视频监控系统中的行人再识别任务具有非常广阔的应用前景。行人再识别的应用与行人检测、目标跟踪、行人行为分析、敏感事件检测等等都有着紧密的联系,这些分析处理技术对于公安部门的刑侦工作和城市安防建设工作有着重要的意义。

3 重识别技术实现

3.1 数据集

目前行人再识别的研究需要大量的行人数据集。行人再识别的数据集主要是通过在不同区域假设无重叠视域的多个摄像头来采集拍摄有行人图像的视频,然后对视频提取帧,对于视频帧图像采用人工标注或算法识别的方式进行人体检测及标注来完成的。行人再识别数据集中包含了跨背景、跨时间、不同拍摄角度下、各种不同姿势的行人图片,如下图所示。

在这里插入图片描述

3.2 Person REID

3.2.1 算法原理

给定N个不同的行人从不同的拍摄视角的无重叠视域摄像机捕获的图像集合,行人再识别的任务是学习一个模型,该模型可以尽可能减小行人姿势和背景、光照等因素带来的影响,从而更好地对行人进行整体上的描述,更准确地对不同行人图像之间的相似度进行衡量。

我这里使用注意力相关的特征的卷积神经网络。该基础卷积神经网络架构可以由任何卷积神经网络模型代替,例如,VGG-19,ResNet-101。

该算法的核心模块在于注意力学习模型。

3.2.2 算法流程图

在这里插入图片描述

4 实现效果

在多行人场景下,对特定行人进行寻找
在这里插入图片描述

5 部分代码

import argparseimport timefrom sys import platformfrom models import *from utils.datasets import *from utils.utils import *from reid.data import make_data_loaderfrom reid.data.transforms import build_transformsfrom reid.modeling import build_modelfrom reid.config import cfg as reidCfgdef detect(cfg,data,weights,images='data/samples',  # input folderoutput='output',  # output folderfourcc='mp4v',  # video codecimg_size=416,conf_thres=0.5,nms_thres=0.5,dist_thres=1.0,save_txt=False,save_images=True):# Initializedevice = torch_utils.select_device(force_cpu=False)torch.backends.cudnn.benchmark = False  # set False for reproducible resultsif os.path.exists(output):shutil.rmtree(output)  # delete output folderos.makedirs(output)  # make new output folder############# 行人重识别模型初始化 #############query_loader, num_query = make_data_loader(reidCfg)reidModel = build_model(reidCfg, num_classes=10126)reidModel.load_param(reidCfg.TEST.WEIGHT)reidModel.to(device).eval()query_feats = []query_pids  = []for i, batch in enumerate(query_loader):with torch.no_grad():img, pid, camid = batchimg = img.to(device)feat = reidModel(img)         # 一共2张待查询图片,每张图片特征向量2048 torch.Size([2, 2048])query_feats.append(feat)query_pids.extend(np.asarray(pid))  # extend() 函数用于在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)。query_feats = torch.cat(query_feats, dim=0)  # torch.Size([2, 2048])print("The query feature is normalized")query_feats = torch.nn.functional.normalize(query_feats, dim=1, p=2) # 计算出查询图片的特征向量############# 行人检测模型初始化 #############model = Darknet(cfg, img_size)# Load weightsif weights.endswith('.pt'):  # pytorch formatmodel.load_state_dict(torch.load(weights, map_location=device)['model'])else:  # darknet format_ = load_darknet_weights(model, weights)# Eval modemodel.to(device).eval()# Half precisionopt.half = opt.half and device.type != 'cpu'  # half precision only supported on CUDAif opt.half:model.half()# Set Dataloadervid_path, vid_writer = None, Noneif opt.webcam:save_images = Falsedataloader = LoadWebcam(img_size=img_size, half=opt.half)else:dataloader = LoadImages(images, img_size=img_size, half=opt.half)# Get classes and colors# parse_data_cfg(data)['names']:得到类别名称文件路径 names=data/coco.namesclasses = load_classes(parse_data_cfg(data)['names']) # 得到类别名列表: ['person', 'bicycle'...]colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))] # 对于每种类别随机使用一种颜色画框# Run inferencet0 = time.time()for i, (path, img, im0, vid_cap) in enumerate(dataloader):t = time.time()# if i < 500 or i % 5 == 0:#     continuesave_path = str(Path(output) / Path(path).name) # 保存的路径# Get detections shape: (3, 416, 320)img = torch.from_numpy(img).unsqueeze(0).to(device) # torch.Size([1, 3, 416, 320])pred, _ = model(img) # 经过处理的网络预测,和原始的det = non_max_suppression(pred.float(), conf_thres, nms_thres)[0] # torch.Size([5, 7])if det is not None and len(det) > 0:# Rescale boxes from 416 to true image size 映射到原图det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Print results to screen image 1/3 data\samples\000493.jpg: 288x416 5 persons, Done. (0.869s)print('%gx%g ' % img.shape[2:], end='')  # print image size '288x416'for c in det[:, -1].unique():   # 对图片的所有类进行遍历循环n = (det[:, -1] == c).sum() # 得到了当前类别的个数,也可以用来统计数目if classes[int(c)] == 'person':print('%g %ss' % (n, classes[int(c)]), end=', ') # 打印个数和类别'5 persons'# Draw bounding boxes and labels of detections# (x1y1x2y2, obj_conf, class_conf, class_pred)count = 0gallery_img = []gallery_loc = []for *xyxy, conf, cls_conf, cls in det: # 对于最后的预测框进行遍历# *xyxy: 对于原图来说的左上角右下角坐标: [tensor(349.), tensor(26.), tensor(468.), tensor(341.)]if save_txt:  # Write to filewith open(save_path + '.txt', 'a') as file:file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))# Add bbox to the imagelabel = '%s %.2f' % (classes[int(cls)], conf) # 'person 1.00'if classes[int(cls)] == 'person':#plot_one_bo x(xyxy, im0, label=label, color=colors[int(cls)])xmin = int(xyxy[0])ymin = int(xyxy[1])xmax = int(xyxy[2])ymax = int(xyxy[3])w = xmax - xmin # 233h = ymax - ymin # 602# 如果检测到的行人太小了,感觉意义也不大# 这里需要根据实际情况稍微设置下if w*h > 500:gallery_loc.append((xmin, ymin, xmax, ymax))crop_img = im0[ymin:ymax, xmin:xmax] # HWC (602, 233, 3)crop_img = Image.fromarray(cv2.cvtColor(crop_img, cv2.COLOR_BGR2RGB))  # PIL: (233, 602)crop_img = build_transforms(reidCfg)(crop_img).unsqueeze(0)  # torch.Size([1, 3, 256, 128])gallery_img.append(crop_img)if gallery_img:gallery_img = torch.cat(gallery_img, dim=0)  # torch.Size([7, 3, 256, 128])gallery_img = gallery_img.to(device)gallery_feats = reidModel(gallery_img) # torch.Size([7, 2048])print("The gallery feature is normalized")gallery_feats = torch.nn.functional.normalize(gallery_feats, dim=1, p=2)  # 计算出查询图片的特征向量# m: 2# n: 7m, n = query_feats.shape[0], gallery_feats.shape[0]distmat = torch.pow(query_feats, 2).sum(dim=1, keepdim=True).expand(m, n) + \torch.pow(gallery_feats, 2).sum(dim=1, keepdim=True).expand(n, m).t()# out=(beta∗M)+(alpha∗mat1@mat2)# qf^2 + gf^2 - 2 * qf@gf.t()# distmat - 2 * qf@gf.t()# distmat: qf^2 + gf^2# qf: torch.Size([2, 2048])# gf: torch.Size([7, 2048])distmat.addmm_(1, -2, query_feats, gallery_feats.t())# distmat = (qf - gf)^2# distmat = np.array([[1.79536, 2.00926, 0.52790, 1.98851, 2.15138, 1.75929, 1.99410],#                     [1.78843, 1.96036, 0.53674, 1.98929, 1.99490, 1.84878, 1.98575]])distmat = distmat.cpu().numpy()  # : (3, 12)distmat = distmat.sum(axis=0) / len(query_feats) # 平均一下query中同一行人的多个结果index = distmat.argmin()if distmat[index] < dist_thres:print('距离:%s'%distmat[index])plot_one_box(gallery_loc[index], im0, label='find!', color=colors[int(cls)])# cv2.imshow('person search', im0)# cv2.waitKey()print('Done. (%.3fs)' % (time.time() - t))if opt.webcam:  # Show live webcamcv2.imshow(weights, im0)if save_images:  # Save image with detectionsif dataloader.mode == 'images':cv2.imwrite(save_path, im0)else:if vid_path != save_path:  # new videovid_path = save_pathif isinstance(vid_writer, cv2.VideoWriter):vid_writer.release()  # release previous video writerfps = vid_cap.get(cv2.CAP_PROP_FPS)width = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (width, height))vid_writer.write(im0)if save_images:print('Results saved to %s' % os.getcwd() + os.sep + output)if platform == 'darwin':  # macosos.system('open ' + output + ' ' + save_path)print('Done. (%.3fs)' % (time.time() - t0))if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help="模型配置文件路径")parser.add_argument('--data', type=str, default='data/coco.data', help="数据集配置文件所在路径")parser.add_argument('--weights', type=str, default='weights/yolov3.weights', help='模型权重文件路径')parser.add_argument('--images', type=str, default='data/samples', help='需要进行检测的图片文件夹')parser.add_argument('-q', '--query', default=r'query', help='查询图片的读取路径.')parser.add_argument('--img-size', type=int, default=416, help='输入分辨率大小')parser.add_argument('--conf-thres', type=float, default=0.1, help='物体置信度阈值')parser.add_argument('--nms-thres', type=float, default=0.4, help='NMS阈值')parser.add_argument('--dist_thres', type=float, default=1.0, help='行人图片距离阈值,小于这个距离,就认为是该行人')parser.add_argument('--fourcc', type=str, default='mp4v', help='fourcc output video codec (verify ffmpeg support)')parser.add_argument('--output', type=str, default='output', help='检测后的图片或视频保存的路径')parser.add_argument('--half', default=False, help='是否采用半精度FP16进行推理')parser.add_argument('--webcam', default=False, help='是否使用摄像头进行检测')opt = parser.parse_args()print(opt)with torch.no_grad():detect(opt.cfg,opt.data,opt.weights,images=opt.images,img_size=opt.img_size,conf_thres=opt.conf_thres,nms_thres=opt.nms_thres,dist_thres=opt.dist_thres,fourcc=opt.fourcc,output=opt.output)

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/256114.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flink从入门到实践(三):数据实时采集 - Flink MySQL CDC

文章目录 系列文章索引一、概述1、版本匹配2、导包 二、编码实现1、基本使用2、更多配置3、自定义序列化器4、Flink SQL方式 三、踩坑1、The MySQL server has a timezone offset (0 seconds ahead of UTC) which does not match the configured timezone Asia/Shanghai. 参考资…

Structured Streaming

目录 一、概述 &#xff08;一&#xff09;基本概念 &#xff08;二&#xff09;两种处理模型 &#xff08;三&#xff09;Structured Streaming和Spark SQL、Spark Streaming关系 二、编写Structured Streaming程序的基本步骤 &#xff08;一&#xff09;实现步骤 &…

人工智能|深度学习——使用多层级注意力机制和keras实现问题分类

代码下载 使用多层级注意力机制和keras实现问题分类资源-CSDN文库 1 准备工作 1.1 什么是词向量? ”词向量”&#xff08;词嵌入&#xff09;是将一类将词的语义映射到向量空间中去的自然语言处理技术。即将一个词用特定的向量来表示&#xff0c;向量之间的距离&#xff08;例…

【 buuctf--刷新过的图片】

前言&#xff1a;这题主要运用到了新的工具F5-steganography由于 java 环境不合适的原因&#xff0c;我不得不重新配java11.0.18。 具体思路&#xff1a;非常帅气的一张图片。。。用 binwalk&#xff0c;stegsolve&#xff0c;zsteg&#xff0c;exiftool 等工具无果后&#xf…

【Java程序设计】【C00253】基于Springboot的在线考试管理系统(有论文)

基于Springboot的在线考试管理系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的在线考试系统 本系统分为系统功能模块、管理员功能模块以及用户功能模块。 系统功能模块&#xff1a;系统登录&#xff0c;管理…

【Django】Django文件上传

文件上传 1 定义&场景 定义&#xff1a;用户可以通过浏览器将图片等文件上传至网站。 场景&#xff1a; 用户上传头像。 上传流程性的文档[pdf&#xff0c;txt等] 2 上传规范-前端[html] 文件上传必须为POST提交方式 表单 <form> 中文件上传时必须带有 enctype…

图(高阶数据结构)

目录 一、图的基本概念 二、图的存储结构 2.1 邻接矩阵 2.2 邻接表 三、图的遍历 3.1 广度优先遍历 3.2 深度优先遍历 四、最小生成树 4.1 Kruskal算法 4.2 Prim算法 五、最短路径 5.1 单源最短路径-Dijkstra算法 5.2 单源最短路径-Bellman-Ford算法 5.3 多源最…

JCIM | MD揭示PTP1B磷酸酶激活RtcB连接酶的机制

Background 内质网应激反应&#xff08;UPR&#xff09; 中的一个重要过程。UPR是由内质网中的三种跨膜传感器&#xff08;IRE1、PERK和ATF6&#xff09;控制的细胞应激反应&#xff0c;当内质网中的蛋白质折叠能力受到压力时&#xff0c;UPR通过减少蛋白质合成和增加未折叠或错…

springcloud分布式架构网上商城源码和论文

首先,论文一开始便是清楚的论述了系统的研究内容。其次,剖析系统需求分析,弄明白“做什么”,分析包括业务分析和业务流程的分析以及用例分析,更进一步明确系统的需求。然后在明白了系统的需求基础上需要进一步地设计系统,主要包罗软件架构模式、整体功能模块、数据库设计。本项…

集合进阶(双列集合、HashMap、LinkedHashMap、TreeMap、Collections)

目录 一、双列集合 1、双列集合的特点 2、双列集合的常见API 3、Map的遍历方式 3.1第一种遍历方式&#xff1a;键找值&#xff08;keySet&#xff09; 3.2第二种遍历方式&#xff1a;键值对&#xff08;entrySet&#xff09;Entry&#xff1a;键值对对象 3.3第三种遍历方…

vue 引入 百度地图API 和 路书

公司项目中&#xff0c;偶尔都会涉及到地图的使用&#xff0c;这里以百度地图为例&#xff0c;我们梳理一下引用流程及注意点 账号和获取密钥 百度地图示例 百度地图 类参考 1、账号和获取密钥 // api.map.baidu.com/api?typewebgl&v3.0&ak您的密钥<script type…

EasyExcel下载带下拉框和批注模板

EasyExcel下载带下拉框和批注模板 一、 代码实现 controller下载入口 /***下载excel模板* author youlu* date 2023/8/14 17:31* param response* param request* return void*/PostMapping("/downloadTemplate")public void downloadExcel(HttpServletResponse r…

Linux笔记之xhost +和docker的关系以及GDK_SCALE和GDK_DPI_SCALE详解

Linux笔记之xhost 和docker的关系以及GDK_SCALE和GDK_DPI_SCALE详解 ——2024-02-11 code review! 文章目录 Linux笔记之xhost 和docker的关系以及GDK_SCALE和GDK_DPI_SCALE详解xhost 的作用xhost 与 Docker 的关系 -e GDK_SCALE 和 -e GDK_DPI_SCALE详解GDK_SCALEGDK_DPI_SC…

Java设计模式大全:23种常见的设计模式详解(一)

本系列文章简介&#xff1a; 设计模式是在软件开发过程中&#xff0c;经过实践和总结得到的一套解决特定问题的可复用的模板。它是一种在特定情境中经过验证的经验和技巧的集合&#xff0c;可以帮助开发人员设计出高效、可维护、可扩展和可复用的软件系统。设计模式提供了一种在…

华为 huawei 交换机 接口 MAC 地址学习限制接入用户数量 配置示例

目录 组网需求: 配置思路&#xff1a; 操作步骤&#xff1a; 配置文件&#xff1a; 组网需求: 如 图 2-14 所示&#xff0c;用户网络 1 和用户网络 2 通过 LSW 与 Switch 相连&#xff0c; Switch 连接 LSW 的接口为GE0/0/1 。用户网络 1 和用户网络 2 分别属于 VLAN10 和 V…

幻兽帕鲁PalWorld服务器2024年配置选择

幻兽帕鲁PalWorld是一款备受期待的虚拟游戏&#xff0c;其独特的幻兽系统和丰富的世界观吸引了大量玩家。然而&#xff0c;随着游戏日益受到关注&#xff0c;服务器的配置选择成为了关键问题。2024年&#xff0c;随着技术不断发展&#xff0c;玩家对于游戏体验的需求也在不断提…

Quartus工程的qsf配置约束文件介绍

一、qsf文件概述 qsf&#xff1a;Quartus Setting File&#xff0c;是Quartus工程的配置文件&#xff1b; 包含一个Quartus工程的所有约束&#xff0c;包括工程的软件版本信息、FPGA器件信息、引脚约分配、引脚电平分配&#xff0c;编译约束和用于Classic TimingAnalyzer的时…

通过QT制作一个模仿微信主界面的界面(不要求实现具体通信功能)

main.cpp #include "widget.h" #include "second.h"#include <QApplication>int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();//实例化第二个界面Second s;QObject::connect(&w, &Widget::my_jump, &…

微信,支付宝在线换钱平台系统源码

探索全新、全开源的在线换钱系统源码&#xff0c;它将以前所未有的方式改变您的支付体验。我们为您精心打造了一个集简单易用与安全高效于一身的优质产品&#xff0c;它采用最新的技术开发&#xff0c;为您带来前所未有的便捷与安心。 这款在线换钱系统源码设计直观&#xff0…