回归预测模型:MATLAB岭回归和Lasso回归

1. 岭回归和Lasso回归的基本原理

1.1 岭回归:

岭回归(Ridge Regression) 是一种用于共线性数据分析的技术。共线性指的是自变量之间存在高度相关关系。岭回归通过在损失函数中添加一个L2正则项( λ ∑ j = 1 n β j 2 \lambda \sum_{j=1}^{n} \beta_j^2 λj=1nβj2)来减小回归系数的大小,从而控制模型的复杂度和防止过拟合。这里的 λ \lambda λ是正则化强度参数。

1.2 Lasso回归:

Lasso回归(Least Absolute Shrinkage and Selection Operator) 通过在损失函数中添加一个L1正则项( λ ∑ j = 1 n ∣ β j ∣ \lambda \sum_{j=1}^{n} |\beta_j| λj=1nβj)来进行变量选择和复杂度调控。Lasso回归倾向于产生一些精确为零的系数,从而实现了变量的自动选择,有助于提高模型的解释能力。

2. MATLAB中岭回归和Lasso回归的实现

岭回归实现:

MATLAB使用ridge函数实现岭回归。此函数要求自变量矩阵进行中心化和标准化。

Lasso回归实现:

MATLAB通过lasso函数实现Lasso回归,提供了一个方便的接口来执行变量选择和正则化。

3. 实例分析

假设我们有一组数据,包括多个自变量(X1, X2, …, Xn)和一个因变量(Y),我们将使用岭回归和Lasso回归来建模,并比较结果。

3.1 岭回归分析代码
clc,clear
% 设置随机数种子以保证结果的可复现性
rng(0);% 生成模拟数据
n_samples = 100;
n_features = 5;
X = randn(n_samples, n_features);
true_coeffs = [3.5; -2; 0; 4; -1]; % 真实系数
Y = X * true_coeffs + randn(n_samples, 1) * 1.5; % 添加噪声% 继续进行岭回归分析
lambda = 0.1:0.1:10; % 设置一系列的正则化强度参数
ridgeCoeffs = ridge(Y, X, lambda, 0)% 绘制岭回归系数随lambda变化的图
figure;
plot(lambda, ridgeCoeffs(2:end, :)); % 从第二行开始绘制,因为ridge函数的第一行是截距项
xlabel('Lambda');
ylabel('Coefficients');
title('Ridge Regression Coefficients vs. Lambda');
legend(arrayfun(@(n) sprintf('Coeff %d', n), 1:n_features, 'UniformOutput', false), 'Location', 'Best');
grid on;
3.2 Lasso回归分析代码
clc,clear
% 设置随机数种子以保证结果的可复现性
rng(0);% 生成模拟数据
n_samples = 100;
n_features = 5;
X = randn(n_samples, n_features);
true_coeffs = [3.5; -2; 0; 4; -1]; % 真实系数
Y = X * true_coeffs + randn(n_samples, 1) * 1.5; % 添加噪声% Lasso回归分析
[B, FitInfo] = lasso(X, Y, 'CV', 10); % 进行Lasso回归,并使用10折交叉验证% 选取最佳Lambda值对应的系数
idxLambda1SE = FitInfo.Index1SE;
coef = B(:, idxLambda1SE);%最佳Lambda值对应的系数
coef0 = FitInfo.Intercept(idxLambda1SE);%最佳Lambda值对应的截距项
disp('最佳Lambda值对应的系数:')
disp(coef)
disp('最佳Lambda值对应的截距项:')
disp(coef0)
lassoPlot(B, FitInfo, 'PlotType', 'Lambda', 'XScale', 'log');%绘制系数路径
lassoPlot(B, FitInfo, 'PlotType', 'CV');%绘制交叉验证误差

4. 求解结果

4.1 岭回归:


绘制每个系数随 λ \lambda λ变化的图:

4.2 Lasso回归:

5. 结果解释和应用

  • 岭回归:通过调整 λ \lambda λ值,可以观察不同正则化强度对模型系数的影响。较大的 λ \lambda λ值会使系数更小,有助于减少过拟合。
  • Lasso回归:Lasso回归结果可以帮助我们识别哪些变量对预测最重要,因为不重要的变量系数会被压缩到0。

6. 结论

岭回归和Lasso回归都是处理高维数据和防止过拟合的有效方法。岭回归通过L2正则化减小系数值,而Lasso回归既可以通过L1正则化减小系数值,又可以实现变量选择。在实际应用中,选择哪一种方法取决于具体问题和数据集的特点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/256627.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用PyOD进行异常值检测

异常值检测各个领域的关键任务之一。PyOD是Python Outlier Detection的缩写,可以简化多变量数据集中识别异常值的过程。在本文中,我们将介绍PyOD包,并通过实际给出详细的代码示例 PyOD简介 PyOD为异常值检测提供了广泛的算法集合&#xff0c…

相机图像质量研究(11)常见问题总结:光学结构对成像的影响--像差

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结:光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结:光学结构对成…

网络协议与攻击模拟_17HTTPS 协议

HTTPShttpssl/tls 1、加密算法 2、PKI(公钥基础设施) 3、证书 4、部署HTTPS服务器 部署CA证书服务器 5、分析HTTPS流量 分析TLS的交互过程 一、HTTPS协议 在http的通道上增加了安全性,传输过程通过加密和身份认证来确保传输安全性 1、TLS …

网络安全检查表

《网络攻击检查表》 1.应用安全漏洞 2.弱口令,默认口令 3.服务器互联网暴露 4.操作系统,中间件安全漏洞 5.研发服务器,邮件服务器等安全检查

CTFshow web(php命令执行 37-40)

?ceval($_GET[shy]);&shypassthru(cat flag.php); #逃逸过滤 ?cinclude%09$_GET[shy]?>&shyphp://filter/readconvert.base64-encode/resourceflag.php #文件包含 ?cinclude%0a$_GET[cmd]?>&cmdphp://filter/readconvert.base64-encode/…

使用C++从零开始,自己写一个MiniWeb

第一步:新建项目 1、打开VS点击创建新项目 2、选择空项目并点下一步(切记不能选错项目类型) 3、填写项目名称和路径,点击创建即可 新建好后项目是这样的比较干净 4、右击源文件,点击添加,新建http.cpp文件…

正点原子-STM32通用定时器学习笔记(1)

目录 1. 通用定时器简介(F1为例) 2. 通用定时器框图 ①时钟源 ②控制器 ③时基单元 ④输入捕获 ⑤捕获/比较(公共) ⑥输出比较 3.时钟源配置 3.1 计数器时钟源寄存器设置方法 3.2 外部时钟模式1 3.3 外部时钟模式2 3…

Toolify.ai 帮助你发现最好的 AI 网站和 AI 工具

🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 人工智能作为一门前沿科技领域,吸引着越来越多的人关注和投入。首先,让我们探讨一下为什么对人工智能感兴趣是值得的: 科技进步与应用:近年来&#xff0c…

探索Nginx:强大的开源Web服务器与反向代理

一、引言 随着互联网的飞速发展,Web服务器在现代技术架构中扮演着至关重要的角色。Nginx(发音为“engine x”)是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP代理服务器。Nginx因其卓越的性能、稳定性和灵活性&…

数字图像处理实验记录十(图像分割实验)

一、基础知识 1、什么是图像分割 图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,特性可以是灰度、颜色、纹理等,目标可以对应单个区域,也可以对应多个区域。 2、图像分割是怎么实现的 图像分割算法基于像素值的不连…

ES实战-book笔记1

#索引一个文档,-XPUT手动创建索引, curl -XPUT localhost:9200/get-together/_doc/1?pretty -H Content-Type: application/json -d {"name": "Elasticsearch Denver","organizer": "Lee" } #返回结果 {"_index" : "g…

[CUDA 学习笔记] Reduce 算子优化

Reduce 算子优化 注: 本文主要是对文章 【BBuf的CUDA笔记】三,reduce优化入门学习笔记 - 知乎 的学习整理 Reduce 又称之为归约, 即根据数组中的每个元素得到一个输出值, 常见的包括求和(sum)、取最大值(max)、取最小值(min)等. 前言 本文同样按照英伟达官方 PP…

微信小程序的图片色彩分析,解决画布网络图片报错问题,窃取网络图片的主色调

1、安装 Mini App Color Thief 包 包括下载包,简单使用都有,之前写了,这里就不写了 网址:微信小程序的图片色彩分析,窃取主色调,调色板-CSDN博客 2、 问题和解决方案 问题:由于我们的窃取图片的…

【02】右旋函数(C语言)

目录 题目:给定一个整数数组nums,将数组中的元素向右轮转k个位置,其中k是非负数。 1.暴力求解(轮转k次) 2. 三段逆置求解 ①逆置函数 ②轮转函数 3.空间换时间求解 题目:给定一个整数数组nums,将数组中…

Ubuntu 23.10通过APT安装Open vSwitch

正文共:888 字 8 图,预估阅读时间:1 分钟 先拜年!祝各位龙年行大运,腾跃展宏图! 之前在介绍OpenStack的时候介绍过(什么是OpenStack?),OpenStack是一个开源的…

Acwing---839. 模拟堆

模拟堆 1.题目2.基本思想3.代码实现 1.题目 维护一个集合,初始时集合为空,支持如下几种操作: I x,插入一个数 x;PM,输出当前集合中的最小值;DM,删除当前集合中的最小值&#xff08…

蓝桥杯-X图形

问题描述 给定一个字母矩阵。一个 X 图形由中心点和由中心点向四个 45度斜线方向引出的直线段组成,四条线段的长度相同,而且四条线段上的字母和中心点的字母相同。 一个 X 图形可以使用三个整数 r,c,L 来描述,其中 r,c 表示中心点位于第 r 行…

Vue源码系列讲解——虚拟DOM篇【二】(Vue中的DOM-Diff)

目录 1. 前言 2. patch 3. 创建节点 4. 删除节点 5. 更新节点 6. 总结 1. 前言 在上一篇文章介绍VNode的时候我们说了,VNode最大的用途就是在数据变化前后生成真实DOM对应的虚拟DOM节点,然后就可以对比新旧两份VNode,找出差异所在&…

基于大语言模型的AI Agents

代理(Agent)指能自主感知环境并采取行动实现目标的智能体。基于大语言模型(LLM)的 AI Agent 利用 LLM 进行记忆检索、决策推理和行动顺序选择等,把Agent的智能程度提升到了新的高度。LLM驱动的Agent具体是怎么做的呢&a…

java_error_in_pycharm.hprof文件是什么?能删除吗?

java_error_in_pycharm.hprof文件是什么?能删除吗? 🌵文章目录🌵 🌳引言🌳🌳hprof格式文件介绍🌳🌳java_error_in_pycharm.hprof文件什么情况下能删除🌳&…