Matplotlib Figure与Axes速成:核心技能一网打尽

Matplotlib Figure与Axes速成:核心技能一网打尽
在这里插入图片描述


🌵文章目录🌵

  • 🌳引言🌳
  • 🌳 一、Figure(图形)🌳
    • 🍁1. 创建Figure🍁
    • 🍁2. 添加Axes🍁
  • 🌳二、Axes(坐标轴)🌳
    • 🍁1. 创建Axes🍁
    • 🍁2. 绘制图表🍁
    • 🍁3. 设置Axes属性🍁
  • 🌳三、Figure和Axes的区别与联系🌳
  • 🌳四、进阶用法与技巧🌳
    • 🍁1. 多子图布局🍁
    • 🍁2. 共享坐标轴🍁
    • 🍁3. 保存和导出图表🍁
  • 🌳五、总结与展望🌳
  • 🌳结尾🌳

🌳引言🌳

在数据分析和可视化领域,Python的Matplotlib库因其强大的功能和广泛的应用而备受推崇。它为用户提供了创建多种类型图表的能力,如折线图、柱状图、散点图等,这些图表对于数据理解和展示至关重要。在Matplotlib库中,Figure和Axes是两个核心概念,它们共同构成了绘图的基础框架。本文将详细解读这两个概念,并探讨它们在Matplotlib中的实际应用,帮助读者更好地掌握数据可视化的关键要素。

🌳 一、Figure(图形)🌳

Figure在Matplotlib中代表了一个完整的图表,它包含了所有的绘图元素,如Axes、标题、图例等。我们可以将Figure看作是一个容器,其中包含了用于绘制图表的所有元素

🍁1. 创建Figure🍁

在Matplotlib中,我们可以使用plt.figure()函数来创建一个新的Figure对象。例如:

import matplotlib.pyplot as pltfig = plt.figure()

这将创建一个默认的Figure对象。我们还可以通过传递参数来自定义Figure的大小、DPI等属性。例如:

fig = plt.figure(figsize=(10, 5), dpi=100)

这将创建一个宽度为10英寸、高度为5英寸、DPI为100的Figure对象。

🍁2. 添加Axes🍁

一旦我们创建了Figure对象,就可以向其添加Axes对象。Axes代表了一个坐标轴系统,它包含了数据、坐标轴标签、标题等。我们可以使用add_subplot()方法来向Figure中添加Axes。例如:

ax = fig.add_subplot(111)

这将在Figure中添加一个1x1的网格中的第一个子图。参数111表示网格的行数、列数和子图的索引。在这个例子中,我们创建了一个单一的Axes对象,占据了整个Figure的空间。

完整代码如下:

import matplotlib.pyplot as pltfig = plt.figure(figsize=(10, 5), dpi=100)
ax = fig.add_subplot(111)
plt.show()

运行结果如下图所示:

🌳二、Axes(坐标轴)🌳

Axes是Matplotlib中的另一个核心概念,它代表了一个坐标轴系统,用于显示数据和进行绘图。每个Axes对象一般都包含了一个X轴和一个Y轴,以及与之关联的数据和标签。

🍁1. 创建Axes🍁

如上所述,我们可以通过向Figure对象添加子图来创建Axes对象。除了使用add_subplot()方法外,我们还可以使用add_axes()方法来创建Axes对象,并指定其在Figure中的位置和大小。例如:

ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])

这将在Figure上创建一个占据了大部分空间的Axes对象。参数[0.1, 0.1, 0.8, 0.8]的原型是[left, bottom, width, height],其中 leftbottomAxes 左下角相对于 Figure 边缘的坐标(以小数形式表示,例如 0 是左/底部边缘,1 是右/顶部边缘),widthheightAxes 的宽度和高度(也是以小数形式表示)。

完整代码如下:

import matplotlib.pyplot as pltfig = plt.figure(figsize=(10, 5), dpi=100)
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
plt.show()

运行结果如下图所示:

在这里插入图片描述

🍁2. 绘制图表🍁

一旦我们有了Axes对象,就可以在其上进行绘图操作。Matplotlib提供了丰富的绘图函数,如plot()scatter()bar()等,用于在Axes上绘制各种图表。例如,要在Axes上绘制一个简单的折线图,我们可以这样做:

x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]
ax.plot(x, y)

这将在Axes上绘制一个由点(1, 2)(2, 3)(3, 5)(4, 7)(5, 11)组成的折线图。

完整代码如下:

import matplotlib.pyplot as pltfig = plt.figure(figsize=(10, 5), dpi=100)
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]
ax.plot(x, y)
plt.show()

运行结果如下图所示:

在这里插入图片描述

🍁3. 设置Axes属性🍁

除了绘制图表外,我们还可以设置Axes的各种属性,如标题、坐标轴标签、刻度等。Matplotlib提供了丰富的函数来设置这些属性。例如:

ax.set_title('Simple Line Plot')
ax.set_xlabel('X-axis Label')
ax.set_ylabel('Y-axis Label')
ax.set_xlim([0, 6])
ax.set_ylim([0, 12])

这些函数分别用于设置Axes的标题、X轴标签、Y轴标签、X轴范围和Y轴范围。

完整代码如下:

import matplotlib.pyplot as pltx = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]fig = plt.figure(figsize=(10, 5), dpi=100)
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(x, y)
ax.set_title('Simple Line Plot')
ax.set_xlabel('X-axis Label')
ax.set_ylabel('Y-axis Label')
ax.set_xlim([0, 6])
ax.set_ylim([0, 12])
plt.show()

运行结果如下图所示:

在这里插入图片描述

🌳三、Figure和Axes的区别与联系🌳

FigureAxes
定义Figure代表整个图表窗口或画布,它是一个容器,可以包含多个子图(Axes)。AxesFigure中的一个子图,它拥有自己的坐标轴、刻度、标签等,用于绘制具体的图表。
作用提供了一个绘制图表的区域,可以容纳一个或多个AxesFigure中绘制具体的图表,如折线图、柱状图等。
数量一个Figure可以包含多个Axes,可通过add_subplot方法添加。一个Figure中可以有多个Axes,但每个Axes都是独立的。
属性包含如尺寸、DPI(每英寸的点数)、背景色等属性。包含如坐标轴范围、刻度、标签、标题等属性。
层级关系AxesFigure的子对象,每个Axes都是Figure的一个部分。AxesFigure的直接子对象,与Figure有直接的层级关系。
绘制关系负责整体的布局和呈现,是图表的容器。Figure的指定位置进行绘制,展示具体的图表内容。

联系

  • AxesFigure的组成部分,每个Axes都在Figure的指定位置进行绘制。
  • FigureAxes共同构成了图表的基本结构,其中Figure提供了绘制的整体环境,而Axes则负责具体的图表内容展示。

区别

  • Figure是一个更高级别的概念,它代表了整个图表窗口或画布,而Axes则是Figure中的一个具体子图。
  • Figure主要负责整体的布局和呈现,而Axes则负责具体的图表绘制和内容展示。
  • 一个Figure可以包含多个Axes,而每个Axes都是独立的,拥有自己的坐标轴、刻度、标签等。

🌳四、进阶用法与技巧🌳

🍁1. 多子图布局🍁

Matplotlib允许在一个Figure中创建多个Axes,通过网格布局或自由布局的方式来实现多子图展示。例如,使用subplot2gridGridSpec可以创建复杂的子图布局。

"""  
绘制正弦、余弦以及它们的和在一个 2x2 的网格布局中。  
"""  
import matplotlib.pyplot as plt  
import numpy as np  # 创建一个 2x2 的网格布局  
fig = plt.figure(figsize=(10, 8))  
gs = fig.add_gridspec(2, 2)  # 在第一行,创建一个跨越两列的 Axes  
ax1 = fig.add_subplot(gs[0, :])  
# 在第二行,第一列创建一个 Axes  
ax2 = fig.add_subplot(gs[1, 0])  
# 在第二行,第二列创建一个 Axes  
ax3 = fig.add_subplot(gs[1, 1])  # 生成一个从 0 到 2π,包含 100 个点的等差数列  
x = np.linspace(0, 2 * np.pi, 100)  
# 计算正弦值  
y1 = np.sin(x)  
# 计算余弦值  
y2 = np.cos(x)  # 在 ax1 上绘制红色的正弦曲线,并设置标题为 'Sine'  
ax1.plot(x, y1, 'r')  
ax1.set_title('Sine')  # 在 ax2 上绘制蓝色的余弦曲线,并设置标题为 'Cosine'  
ax2.plot(x, y2, 'b')  
ax2.set_title('Cosine')  # 在 ax3 上绘制绿色的正弦和余弦的和的曲线,并设置标题为 'Sine + Cosine'  
ax3.plot(x, y1 + y2, 'g')  
ax3.set_title('Sine + Cosine')  # 显示图形  
plt.show()

运行结果如下图所示:

在这里插入图片描述

🍁2. 共享坐标轴🍁

有时我们可能希望多个图表共享同一个X轴或Y轴。Matplotlib提供了sharexsharey参数来实现这一功能。

"""  
绘制正弦和余弦函数图像
"""
import matplotlib.pyplot as plt
import numpy as np# 生成一个从0到2π包含100个点的等差数列
x = np.linspace(0, 2 * np.pi, 100)# 计算正弦和余弦值
y1 = np.sin(x)
y2 = np.cos(x)# 创建一个2行1列的子图布局,共享x轴
fig, axs = plt.subplots(2, 1, sharex=True)# 在第一个子图上绘制正弦函数图像,并设置y轴标签为'Sine'
axs[0].plot(x, y1)
axs[0].set_ylabel('Sine')# 在第二个子图上绘制余弦函数图像,并设置y轴标签为'Cosine'
axs[1].plot(x, y2)
axs[1].set_ylabel('Cosine')# 调整子图之间的间距
fig.tight_layout()# 显示图像
plt.show()

运行结果如下图所示:

在这里插入图片描述

🍁3. 保存和导出图表🍁

创建好图表后,我们可以使用savefig方法将其保存为图片文件,支持多种格式如PNG、PDF、SVG等。

plt.savefig('my_plot.png')  # 保存为PNG图片

🌳五、总结与展望🌳

通过本文的详细介绍,我们对Matplotlib中的Figure和Axes有了更加深入的理解。从基础的创建和设置,到进阶的多子图布局,Matplotlib提供了丰富的功能和灵活的接口,使得数据可视化变得简单而高效。未来,随着数据科学和可视化技术的不断发展,我们期待Matplotlib能够继续带来更多创新和便利的功能。

希望本文能够帮助读者更好地掌握Matplotlib中的Figure和Axes,并在实际的数据分析和可视化工作中发挥它们的强大作用。


🌳结尾🌳

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见💬
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果博文给您带来了些许帮助,那么,希望能为我们点个免费的赞👍👍/收藏👇👇,您的支持和鼓励👏👏是我们持续创作✍️✍️的动力
我们会持续努力创作✍️✍️,并不断优化博文质量👨‍💻👨‍💻,只为给带来更佳的阅读体验。
如果有任何疑问或建议,请随时在评论区留言,我们将竭诚为你解答~
愿我们共同成长🌱🌳,共享智慧的果实🍎🍏!


万分感谢🙏🙏点赞👍👍、收藏⭐🌟、评论💬🗯️、关注❤️💚~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/257110.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

配备Apple T2 安全芯片的 Mac 机型及T2芯片mac电脑U盘装系统教程

T2 芯片为 Mac 提供了一系列功能,例如加密储存和安全启动功能、增强的图像信号处理功能,以及适用于触控 ID 数据的安全保护功能。哪些电脑配备了 T2 安全芯片呢,T2芯片mac电脑又如何重装系统呢?跟随小编一起来看看吧! …

陪护系统|陪护小程序提升长者护理服务质量的关键

在如今逐渐老龄化的社会中,老年人对更好的护理服务需求不断增加。科技的进步使得陪护小程序系统源码成为提供优质服务的重要途径之一。本文将从运营角度探讨如何优化陪护小程序系统源码,提升长者护理服务的质量。 首先,我们需要对软件的设计和…

scIMC:scRNA-seq插补方法基准

在scRNA-seq中一个主要的挑战即为“dropout”事件,它扭曲了基因表达,显著影响了单细胞转录组的下游分析。为了解决这个问题,已经做了很多努力,并开发了几种基于模型和基于深度学习的scRNA-seq插补方法。但是,目前还缺乏…

ES6 ~ ES11 学习笔记

课程地址 ES6 let let 不能重复声明变量(var 可以) let a; let b, c, d; let e 100; let f 521, g "atguigu", h [];let 具有块级作用域,内层变量外层无法访问 let 不存在变量提升(运行前收集变量和函数&#…

Python爬虫之Ajax数据爬取基本原理

前言 有时候我们在用 requests 抓取页面的时候,得到的结果可能和在浏览器中看到的不一样:在浏览器中可以看到正常显示的页面数据,但是使用 requests 得到的结果并没有。这是因为 requests 获取的都是原始的 HTML 文档,而浏览器中…

【数据结构】哈希桶封装出map和set

利用之前的哈希桶封装出unordered_map和unordered_set。 这个封装并不简单,迭代器的使用,模板参数的繁多,需要我们一层一层封装。 map是一个k - v类型,set是k类型,那么就明确了如果需要封装,底层的tables…

pm2启动的node项目访问不了,npm start却可以访问

netstat -ntlp输入该命令,查看启动的服务端口是否有被监听到,如3001,4000之类的,是node项目启动时候自己配的那个, 若没有,则执行 pm2 delete [app-id/app-name] 先删除启动的这个项目 例如pm2 delete my…

LeetCode Python - 15.三数之和

目录 题目答案运行结果 题目 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意:答案中不可…

C语言—字符数组(3)

可能不是那么的完整,先凑合看吧,如果我学会如何修改以后,我慢慢回来修改的 1.编写程序实现对两个字符串的连接功能; 法一:不使用strcat函数,写程序直接实现,记得添加结束符,不然程序访问数组时候将变得不…

ZooKeeper安装及配置(Windows版)

步骤: 1.官网下载二进制版本ZooKeeper安装包。 2.解压到你要安装的目录下 3.配置 3.1进入目录 D:\Install\apache-zookeeper-3.9.1-bin 新增两个文件夹:data和log 3.2 进入目录D:\Install\apache-zookeeper-3.9.1-bin\conf 复制zoo_sample.cfg文件&a…

python中库的安装和卸载

1 安装库的基本方法 pip install 库名 2 批量下载(pa.txt放入库的名称和版本要求)格式如图所示: pip install -r pa.txt 3 官网下载安装库 https://pypi.org/project/ 搜索后点击Download files python -m pip install C:\Users\ZHUHUA\Downloads\…

elasticsearch下载及可视化工具下载使用

elasticsearch下载及配置、启动 一、下载 Download Elasticsearch | Elastic 二、启动 双击bat即可。 出现如下说明启动成功: 访问测试: 三、注意 (1)因为es启动默认端口是:9200,所以需要检查此端口是否被占用。…

M3芯片支持追光效果吗?苹果电脑上值得玩的游戏大作有什么? Mac电脑热门游戏推荐 苹果电脑玩幻兽帕鲁 crossover软件安装

M3是苹果最新发布的芯片,它采用了业界领先的3纳米工艺,能够提供更快的速度和更高的能效。苹果电脑是一种高端的个人电脑,它也有着不少优秀的游戏大作,能够给玩家带来不同的游戏体验。那么,M3支持追光效果吗&#xff1f…

【Linux】指令提权-sudo

Hello everybody,新年快乐!哈哈!今天打算给大家讲讲指令提权的相关知识,虽然内容不多,但有时却很有用。在我们学习过权限,vim后就可以学习指令提权啦,没看过的宝子们建议先去看一看我之前的文章…

单片机学习笔记---DS18B20温度读取

目录 OneWire.c 模拟初始化的时序 模拟发送一位的时序 模拟接收一位的时序 模拟发送一个字节的时序 模拟接收一个字节的时序 OneWire.h DS18B20.c DS18B20数据帧 模拟温度变换的数据帧 模拟温度读取的数据帧 DS18B20.h main.c 上一篇讲了DS18B20温度传感器的工作原…

leetcode:买卖股票最佳时机二

思路: 使用贪心算法:局部最优是将买卖过程中产生的正数进行相加,进而使得最后结果最大(全局最优)。 price [7,1,5,10,3,6,4] -6,4,5,-7,3,-2 正数相加就得到了最大 代码实现: 1.循环中下标从1开始 …

板块一 Servlet编程:第二节 Servlet的实现与生命周期 来自【汤米尼克的JAVAEE全套教程专栏】

板块一 Servlet编程:第二节 Servlet的实现与生命周期 一、Servlet相关概念Serlvet的本质 二、中Web项目中实现Servlet规范(1)在普通的Java类中继承HttpServlet类(2)重写service方法编辑项目对外访问路径 二、Servlet工…

六、Redis之数据持久化及高频面试题

6.1 数据持久化 官网文档地址:https://redis.io/docs/manual/persistence/ Redis提供了主要提供了 2 种不同形式的持久化方式: RDB(Redis数据库):RDB 持久性以指定的时间间隔执行数据集的时间点快照。AOF&#xff0…

在微信公众平台怎么实现报名缴费链接_轻松几步,微信报名缴费全搞定!

在快节奏的现代生活中,人们越来越追求高效便捷的服务体验。传统的报名缴费方式,如现场排队、银行转账等,不仅耗费大量时间,还可能因为各种原因造成不便。如今,随着微信公众平台的普及和发展,我们有了更加简…

Android的常用Drawable讲解

今天来讲讲Android开发中水都绕不开的东西----drawable。最常使用的莫过于通过XML所声明的Drawable作为View背景,通过代码创建的应用场景则较少。其有着使用简单,比自定义view的成本要低的特点。同时,非图片类型的drawable占用空间较小&#…