MATLAB实现LSTM时间序列预测

        LSTM模型可以在一定程度上学习和预测非平稳的时间序列,其具有强大的记忆和非线性建模能力,可以捕捉到时间序列中的复杂模式和趋势[4]。在这种情况下,LSTM模型可能会自动学习到时间序列的非平稳性,并在预测中进行适当的调整。其作为循环神经网络(RNN)的特殊形式,继承了循环神经网络的优点。首先,利用记忆机制,可以有效提取时间序列数据的时间依赖性。其次,在模型训练时,学习到的权重参数在时间步骤之间是共享的,故对长时间序列的训练具有一定的可拓展性,而且比起传统的神经网络模型,它所需参数数量较少,降低了模型的复杂度。最后,它也具有LSTM神经网络特有的优势,对训练时权重变化不稳定而产生梯度消失和梯度爆炸问题有着不错的改善效果。LSTM单元的主要结构由3个门控制器和记忆细胞组成。其中,输入门控制特征的流向信息,输出门控制特征的输出信息,遗忘门控制特征的去除与遗忘,记忆细胞负责存储细胞状态信息。通过不同功能门的控制,从而解决RNN存在的长期依赖问题[5]。LSTM单元内的计算过程为:

clc
clear
load('data.mat')
data=RTS'
%% 序列的前485个用于训练,后10个用于验证神经网络,然后往后预测10个数据。
dataTrain = data(1:485);    %定义训练集
dataTest = data(486:495);    %该数据是用来在最后与预测值进行对比的
%% 数据预处理
mu = mean(dataTrain);    %求均值 
sig = std(dataTrain);      %求均差 
dataTrainStandardized = (dataTrain - mu) / sig;    
%% 输入的每个时间步,LSTM网络学习预测下一个时间步,这里交错一个时间步效果最好。
XTrain = dataTrainStandardized(1:end-1);  
YTrain = dataTrainStandardized(2:end);  
%% 一维特征lstm网络训练
numFeatures = 1;   %特征为一维
numResponses = 1;  %输出也是一维
numHiddenUnits = 200;   %创建LSTM回归网络,指定LSTM层的隐含单元个数200。可调layers = [ ...sequenceInputLayer(numFeatures)    %输入层lstmLayer(numHiddenUnits)  % lstm层,如果是构建多层的LSTM模型,可以修改。fullyConnectedLayer(numResponses)    %为全连接层,是输出的维数。regressionLayer];      %其计算回归问题的半均方误差模块 。即说明这不是在进行分类问题。%指定训练选项,求解器设置为adam, 1000轮训练。
%梯度阈值设置为 1。指定初始学习率 0.01,在 125 轮训练后通过乘以因子 0.2 来降低学习率。
options = trainingOptions('adam', ...'MaxEpochs',1000, ...'GradientThreshold',1, ...'InitialLearnRate',0.01, ...      'LearnRateSchedule','piecewise', ...%每当经过一定数量的时期时,学习率就会乘以一个系数。'LearnRateDropPeriod',400, ...      %乘法之间的纪元数由“ LearnRateDropPeriod”控制。可调'LearnRateDropFactor',0.15, ...      %乘法因子由参“ LearnRateDropFactor”控制,可调'Verbose',0,  ...  %如果将其设置为true,则有关训练进度的信息将被打印到命令窗口中。默认值为true。'Plots','training-progress');    %构建曲线图 将'training-progress'替换为none
net = trainNetwork(XTrain,YTrain,layers,options); 
net = predictAndUpdateState(net,XTrain);  %将新的XTrain数据用在网络上进行初始化网络状态
[net,YPred] = predictAndUpdateState(net,YTrain(end));  %用训练的最后一步来进行预测第一个预测值,给定一个初始值。这是用预测值更新网络状态特有的。
%% 进行用于验证神经网络的数据预测(用预测值更新网络状态)
for i = 2:20  %从第二步开始,这里进行20次单步预测(10为用于验证的预测值,10为往后预测的值。一共20个)[net,YPred(:,i)] = predictAndUpdateState(net,YPred(:,i-1),'ExecutionEnvironment','cpu');  %predictAndUpdateState函数是一次预测一个值并更新网络状态
end
%% 验证神经网络
YPred = sig*YPred + mu;      %使用先前计算的参数对预测去标准化。
rmse = sqrt(mean((YPred(1:10)-dataTest).^2)) ;     %计算均方根误差 (RMSE)。
subplot(2,1,1)
plot(dataTrain(1:end))   %先画出前面485个数据,是训练数据。
hold on
idx = 486:(485+20);   %为横坐标
plot(idx,YPred(1:20),'.-')  %显示预测值
hold off
xlabel("Time")
ylabel("Case")
title("Forecast")
legend(["Observed" "Forecast"])
subplot(2,1,2)
plot(data)
xlabel("Time")
ylabel("Case")
title("Dataset")
%% 继续往后预测2023年的数据
figure(2)
idx = 486:(485+20);   %为横坐标
plot(idx,YPred(1:20),'.-')  %显示预测值
hold off
net = resetState(net);

 MATLAB运行结果如下:

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/257591.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序介绍、账号申请、开发者工具目录结构详解及小程序配置

目录 一、微信小程序介绍 1.什么是小程序? 2.小程序可以干什么? 3.微信小程序特点 二、账号申请 1.账号注册 2.测试号申请 三、安装开发工具 四、开发小程序 五、目录结构 JSON 配置 小程序配置 app.json 工具配置 project.config.json 页…

云备份项目:在云端保护您的数据【二、开发】

☘️过度的信息对一个过着充实生活的人来说,是一种不必要的负担☘️ 文章目录 前言工具类实现文件实用工具类代码实现 Json实用工具类代码实现 服务端单例配置类系统配置信息单例配置类 数据管理类数据信息数据管理 热点管理类业务处理类 客户端数据管理类文件备份类…

高级FPGA开发之基础协议PCIe(二)

高级FPGA开发之基础协议之PCIe(二) 一、TLP报文类型 在PCIe总线中,存储器读写、I/O读写和配置读写请求TLP主要由以下几类报文组成: 1.1 存储器读请求TLP和读完成TLP 当PCIe主设备(RC或者EP)访问目标设备…

DS:二叉树的链式结构及实现

创作不易,友友们给个三连吧!! 一、前言 前期我们解释过二叉树的顺序结构(堆)为什么比较适用于完全二叉树,因为如果用数组来实现非完全二叉树,那么数组的中间部分就可能会存在大量的空间浪费。 …

【MySQL】高度为2和3时B+树能够存储的记录数量的计算过程

文章目录 题目答案高度为2时的B树高度为3时的B树总结 GPT4 对话过程 题目 InnoDB主键索引的Btree在高度分别为 2 和 3 时,可以存储多少条记录? 答案 高度为2时的B树 计算过程: 使用公式 ( n 8 ( n 1 ) 6 16 1024 ) (n \times 8 …

STM32F1 引脚重映射功能

STM32 端口引脚重映射 文章目录 STM32 端口引脚重映射前言1、查阅芯片数据手册1.1 串口引脚重映射描述 2、代码部分2.1 核心代码部分 3、实验现象4、总结 前言 在写程序时遇到想要的端口功能,而这个引脚又被其它的功能占用了无法删除掉或直接使用,这种情…

实例分割论文阅读之:《Mask Transfiner for High-Quality Instance Segmentation》

1.摘要 两阶段和基于查询的实例分割方法取得了显著的效果。然而,它们的分段掩模仍然非常粗糙。在本文中,我们提出了一种高质量和高效的实例分割Mask Transfiner。我们的Mask Transfiner不是在规则的密集张量上操作,而是将图像区域分解并表示…

深入探索Pandas读写XML文件的完整指南与实战read_xml、to_xml【第79篇—读写XML文件】

深入探索Pandas读写XML文件的完整指南与实战read_xml、to_xml XML(eXtensible Markup Language)是一种常见的数据交换格式,广泛应用于各种应用程序和领域。在数据处理中,Pandas是一个强大的工具,它提供了read_xml和to…

蓝桥杯嵌入式学习记录——按键的使用

目录 一、按键原理简介 二、cubeMX的配置 三、按键的短按代码 四、按键的长按代码 一、按键原理简介 在STM32中,按键连接通常使用GPIO(通用输入/输出)端口来实现。当按键未被按下时,GPIO端口处于高电平状态(即1&am…

Linux第48步_编译正点原子的出厂Linux内核源码

编译正点原子的出厂 Linux 内核源码,为后面移植linux做准备。研究对象如下: 1)、linux内核镜像文件“uImage” 路径为“arch/arm/boot”; 2)、设备树文件“stm32mp157d-atk.dtb” 路径为“arch/arm/boot/dts” 3)、默认配置文件“stm32m…

3D高斯溅射:面向三维场景的实时渲染技术

1. 前言 高斯溅射技术【1】一经推出,立刻引起学术界和工业界的广泛关注。相比传统的隐式神经散射场渲染技术,高斯溅射依托椭球空间,显性地表示多目图像的三维空间关系,其计算效率和综合性能均有较大的提升,且更容易理…

【AI视野·今日NLP 自然语言处理论文速览 第七十八期】Wed, 17 Jan 2024

AI视野今日CS.NLP 自然语言处理论文速览 Wed, 17 Jan 2024 (showing first 100 of 163 entries) Totally 100 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Deductive Closure Training of Language Models for Coherence, Accur…

VueCLI核心知识3:全局事件总线、消息订阅与发布

这两种方式都可以实现任意两个组件之间的通信 1 全局事件总线 1.安装全局事件总线 import Vue from vue import App from ./App.vueVue.config.productionTip false/* 1.第一种写法 */ // const Demo Vue.extend({}) // const d new Demo()// Vue.prototype.x d // 把Dem…

XML学习

XML学习 1 XML介绍2 XML语法3 XML特殊字符4 XML文档结构5 XML命名空间 1 XML介绍 XML是可扩展的标记性语言&#xff0c;常用来传输和存储数据。可见于Web中的web.xml和Maven中的pom.xml version是版本&#xff0c;encoding是编码 <?xml version"1.0" encodin…

IMX6ULL移植U-Boot 2022.04

目录 目录 1.编译环境以及uboot版本 2.默认编译测试 3.uboot中新增自己的开发板 3.编译测试 4.烧录测试 5.patch文件 1.编译环境以及uboot版本 宿主机Debian12u-boot版本lf_v2022.04 ; git 连接GitHub - nxp-imx/uboot-imx: i.MX U-Boot交叉编译工具gcc-arm-10.3-2021.0…

【PyQt】08 - 编辑Tab顺序

文章目录 前言一、Tab顺序二、编辑Tab顺序总结 前言 介绍了什么是Tab顺序&#xff0c;以及如何修改Tab顺序。 一、Tab顺序 当你的界面设计好之后&#xff0c;在输入栏按住Tab按键&#xff0c;他会按照你摆放的顺序一次转跳 二、编辑Tab顺序 方法一 然后鼠标左击就可以改变…

PHP毕业设计图片分享网站76t17

图片分享网站主要是为了提高工作人员的工作效率和更方便快捷的满足用户&#xff0c;更好存储所有数据信息及快速方便的检索功能&#xff0c;对系统的各个模块是通过许多今天的发达系统做出合理的分析来确定考虑用户的可操作性&#xff0c;遵循开发的系统优化的原则&#xff0c;…

Vegeta压测工具学习与使用

Vegeta压测工具学习与使用 目标&#xff1a; 能够在命令行下使用Vegeta对指定API进行测试了解如何导出结果&#xff0c;以及能获得什么样的结果(P99,P99.9,QPS)探索能否导出其他结果&#xff0c;是否能够执行复杂命令或简易脚本等 时间比较紧迫&#xff0c;预计两到三个小时内完…

Sentinel 流控-链路模式

链路模式 A B C 三个服务 A 调用 C B 调用 C C 设置流控 ->链路模式 -> 入口资源是 A A、B 服务 package com.learning.springcloud.order.controller;import com.learning.springcloud.order.service.BaseService; import org.springframework.beans.factory.annotatio…

【JAVA】计算机软件工程人工智能研究生复试资料整理

1、JAVA 2、计算机网络 3、计算机体系结构 4、数据库 5、计算机租场原理 6、软件工程 7、大数据 8、英文 自我介绍 1. Java 1. == 和 equals的区别 比较基本数据类型是比较的值,引用数据类型是比较两个是不是同一个对象,也就是引用是否指向同 一个对象,地址是否相同,equ…