HiveSQL——用户行为路径分析

注:参考文档:

SQL之用户行为路径分析--HQL面试题46【拼多多面试题】_路径分析 sql-CSDN博客文章浏览阅读2k次,点赞6次,收藏19次。目录0 问题描述1 数据分析2 小结0 问题描述已知用户行为表 tracking_log, 大概字段有:(user_id 用户编号, op_id 操作编号, op_time 操作时间)要求:(1)统计每天符合以下条件的用户数:A操作之后是B操作,AB操作必须相邻。 (2)统计用户行为序列为A-B-D的用户数其中:A-B之间可以有任何其他浏览记录(如C,E等),B-D之间除了C记录可以有任何其他浏览记录(如A,E等)1 数据分析(1)数据生成......_路径分析 sqlhttps://blog.csdn.net/godlovedaniel/article/details/119856344

0 问题描述

   有一张用户行为表 tracking_log,包括字段:user_id 用户编号, op_id 操作编号, op_time 操作时间。2个需求:

  • 统计每天符合以下条件的用户数:A操作之后是B操作,AB操作必须相邻;
  • 统计用户行为序列为A-B-D的用户数; 其中 A-B之间可以有任何其他浏览记录(如C,E等),B-D之间除了C记录可以有任何其他浏览记录(如A,E等)

  1 数据准备

create table tracking_log(user_id int ,op_id string,op_time string)row format delimited fields terminated by '\t';insert overwrite table tracking_log values
(1, 'A', '2020-1-1 12:01:03'),
(2, 'A', '2020-1-1 12:01:04'),
(3, 'A', '2020-1-1 12:01:05'),
(1, 'B', '2020-1-1 12:03:03'),
(1, 'A', '2020-1-1 12:04:03'),
(1, 'C', '2020-1-1 12:06:03'),
(1, 'D', '2020-1-1 12:11:03'),
(2, 'A', '2020-1-1 12:07:04'),
(3, 'C', '2020-1-1 12:02:05'),
(2, 'C', '2020-1-1 12:09:03'),
(2, 'A', '2020-1-1 12:10:03'),
(4, 'A', '2020-1-1 12:01:03'),
(4, 'C', '2020-1-1 12:11:05'),
(4, 'D', '2020-1-1 12:15:05'),
(1, 'A', '2020-1-2 12:01:03'),
(2, 'A', '2020-1-2 12:01:04'),
(3, 'A', '2020-1-2 12:01:05'),
(1, 'B', '2020-1-2 12:03:03'),
(1, 'A', '2020-1-2 12:04:03'),
(1, 'C', '2020-1-2 12:06:03'),
(2, 'A', '2020-1-2 12:07:04'),
(3, 'B', '2020-1-2 12:08:05'),
(3, 'E', '2020-1-2 12:09:05'),
(3, 'D', '2020-1-2 12:11:05'),
(2, 'C', '2020-1-2 12:09:03'),
(4, 'E', '2020-1-2 12:05:03'),
(4, 'B', '2020-1-2 12:06:03'),
(4, 'E', '2020-1-2 12:07:03'),
(2, 'A', '2020-1-2 12:10:03');

2 数据分析

需求一:统计每天符合以下条件的用户数:A操作之后是B操作,AB操作必须相邻;

step1: 将路径分析转换成字符串序列分析,采用函数concat_ws(',', collect_set())

selectuser_id,op_id,op_time,collect_set(op_id) over (partition by user_id order by op_time)  cs,--用户行为轨迹--collect_set 及collect_list属于高级的聚合窗口函数,当over()中有order by,但是省略窗口子句时候,窗口计算范围:orws between unbounded preceding and current rowconcat_ws(',', collect_set(op_id) over (partition by user_id order by op_time)) as op_id_str
from tracking_log
order by user_id, op_time

上述代码涉及到的函数:

collect_list : 收集并形成list集合,结果不去重 (高级聚合函数)

  • 语法:collect_list(col)

  • 返回值:array
  • 说明:在hive中是把一个key的多个信息收集起来合成一个,不去重
  • 举例:select avg(score) from table;

collect_set:收集并形成set集合,结果去重(高级聚合函数)

  • 语法:collect_set(col)
  • 返回值:array
  • 说明:在hive中是把一个key的多个信息收集起来,去重
  • 举例:select avg(score) from table;

concat_ws(带分隔符的字符串连接函数)

  • 语法:concat_ws(string SEP, string A ,string B.......)
  • 返回值:string
  • 说明:返回输入字符串连接后的结果,SEP表示各个字符串的分隔符
  • 举例:select  concat_ws('|','ad','cv','op') ;---> ad|cv|op

step2: 利用函数 locate()判断序列 A,B 是否在字符串op_id_str 中存在,存在则返回该位置的索引,where locate('A,B', op_id_str) >0

selectdate_format(op_time, 'yyyy-MM-dd') as dt,count(distinct user_id) cnt
from (selectuser_id,op_id,op_time,collect_set(op_id) over (partition by user_id order by op_time)  cs,--用户行为轨迹concat_ws(',', collect_set(op_id) over (partition by user_id order by op_time)) as op_id_strfrom tracking_logorder by user_id, op_time) t
where locate('A,B', op_id_str) >0
group by date_format(op_time, 'yyyy-MM-dd')

上述代码涉及到的函数:

locate:第一次出现的位置

  • 语法: locate( string substr,  string str [, int pos] )
  • 返回值: int
  • 说明:查找字符串substr第一次出现的位置
  •  举例:select locate('ad','aadbedfaad');  ---> 2

           select locate('A,B','A,B,C,D');  ---> 1

需求二:需要匹配A-B-D的路径,但A,B之间可以有任何其他浏览记录,B-D之间除了C记录可以有任何其他浏览记录,所以使用字符串的正则匹配,like来求解。代码片段: where op_id_str  like '%A%B%D' and op_id_str not like '%A%B%C%D'

selectdate_format(op_time, 'yyyy-MM-dd') as dt,count(distinct user_id) as cnt
from (selectuser_id,op_id,op_time,collect_set(op_id) over (partition by user_id order by op_time)  cs,--用户行为轨迹concat_ws(',', collect_set(op_id) over (partition by user_id order by op_time)) as op_id_strfrom tracking_logorder by user_id, op_time) t
where op_id_str  like '%A%B%D' and op_id_str not like '%A%B%C%D'
group by date_format(op_time, 'yyyy-MM-dd');

3 小结

   上述案例阐述用户行为路径的解决方法,主要思路是将用户路径转换为字符串序列进行分析,并利用like方法进行路径的模糊匹配。(字符”%”表示任意数量的字符。)

    Hive的like正则表达式见:Hive正则表达式-CSDN博客文章浏览阅读382次,点赞13次,收藏5次。Hive正则表达式https://blog.csdn.net/SHWAITME/article/details/136094446?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/257754.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ELAdmin 发送邮件

邮箱配置 ELAdmin目录中选择系统工具->邮件工具。 发件人邮箱:发送者的邮箱地址发件用户名:一般都是发件人邮箱前面的部分,也可以任意写邮箱密码:如果是 qq 邮箱或者腾讯企业邮箱,需要使用授权码。SMTP地址&…

CSRNET图像修复,DNN

CSRNET图像修复 CSRNET图像修复,只需要OPENCV的DNN

【汇编】简单的linux汇编语言程序

一、Linux系统汇编语言 Linux系统上的汇编语言可以使用不同的语法风格,主要包括Intel语法和AT&T语法。这两种语法有各自的特点和风格区别,尽管它们表示的底层机器指令相同。下面分别对两种语法进行简要说明: Intel语法 Intel语法是由I…

C语言------一种思路解决实际问题

1.比赛名次问题 ABCDE参加比赛&#xff0c;那么每个人的名次都有5种可能&#xff0c;即1&#xff0c;2&#xff0c;3&#xff0c;4&#xff0c;5&#xff1b; int main() {int a 0;int b 0;int c 0;int d 0;int e 0;for (a 1; a < 5; a){for (b 1; b < 5; b){for…

Panalog 日志审计系统 libres_syn_delete.php 前台RCE漏洞复现

0x01 产品简介 Panalog是一款日志审计系统,方便用户统一集中监控、管理在网的海量设备。 0x02 漏洞概述 Panalog日志审计系统 libres_syn_delete.php接口处存在远程命令执行漏洞,攻击者可执行任意命令,接管服务器权限。 0x03 影响范围 version <= MARS r10p1Free 0…

2024.2.10 DMS(数据库管理系统)初体验

数据库管理系统(Database Management System)是一种操纵和管理数据库的大型软件&#xff0c;用于建立、使用和维护数据库&#xff0c;简称DBMS。它对数据库进行统一的管理和控制&#xff0c;以保证数据库的安全性和完整性。用户通过DBMS访问数据库中的数据&#xff0c;数据库管…

OpenCV 笔记(22):图像的缩放——最近邻插值、双线性插值算法

1. 图像缩放 1.1 简介 图像缩放是指通过增加或减少像素来改变图像尺寸的过程&#xff0c;是图像处理中常见的操作。图像缩放会涉及效率和图像质量之间的权衡。 图像放大&#xff08;也称为上采样或插值&#xff09;的主要目的是放大原图像&#xff0c;以便在更高分辨率的显示设…

springboot集成elasticsearch

一、依赖下载 创建好一个springboot项目&#xff0c;需要集成es&#xff1a; 因为springboot默认集成了es&#xff0c;但是版本号需要与本地或者服务器es的版本号一致&#xff0c;我本地es版本是7.14.0&#xff0c;所以需要在<properties></properties>中指定es版…

插值(一)——多项式插值(C++)

插值 插值的作用是可以将原本比较难计算的函数转换为误差在一定范围内的多项式&#xff0c;比如在单片机中直接计算 x 、 log ⁡ 2 x \sqrt{x}、\log_2x x ​、log2​x之类的函数是比较麻烦的&#xff0c;但是使用插值的方法就可以将其转换为误差可控的只有乘法和加减法的多项…

【机器学习案例4】为机器学习算法编码分类数据【含源码】

目录 编码分类数据 序数编码 标签编码 一次性编码 目标编码 目标编码的优点 目标编码的缺点 在现实生活中,收集的原始数据很少采用我们可以直接用于机器学习模型的格式,即数值型数据。因此,需要进行一些预处理,以便以正确的格式呈现数据、选择信息丰富的数据或降低其…

VitePress-12-markdown中使用vue的语法

前言 VitePress 中&#xff0c;markdown文档最终都会转换成为 html文件&#xff0c;我们在访问的时候&#xff0c;也是直接访问的 xxx.html 文件。而且&#xff0c;markdown文档会被作为 [vue单文件] 进行处理&#xff0c;因此&#xff0c;我们我们可以在文档中使用 vue 语法&…

C++ new 和 malloc 的区别?

相关系列文章 C new 和 malloc 的区别&#xff1f; C内存分配策略​​​​​​​ 目录 1.引言 2.区别 2.1.申请的内存分配区域 2.2.类型安全和自动大小计算 2.3.构造函数和析构函数的调用 2.4.异常处理 2.5.配对简便性 2.6.new 的重载 2.7.关键字和操作符 3.总结 1.引…

WebSocket原理详解

目录 1.引言 1.1.使用HTTP不断轮询 1.2.长轮询 2.websocket 2.1.概述 2.2.websocket建立过程 2.3.抓包分析 2.4.websocket的消息格式 3.使用场景 4.总结 1.引言 平时我们打开网页&#xff0c;比如购物网站某宝。都是点一下列表商品&#xff0c;跳转一下网页就到了商品…

OpenGL-ES 学习(4)---- OpenGL-ES 坐标体系

坐标体系 我们知道 OpenGL -ES 坐标系中每个顶点的 x&#xff0c;y&#xff0c;z 坐标都应该在 -1.0 到 1.0 之间&#xff0c;超出这个坐标范围的顶点都将不可见。 将一个物体&#xff08;图像&#xff09;渲染到屏幕上&#xff0c;通常经过将物体坐标转换为标准化设备坐标&am…

高德地图上绘制热力图的方法

百度地图和高德地图的JavaScript API都提供了热力图的绘制方法&#xff0c;都是将热力图作为新的图层&#xff0c;叠加到地图上。但是百度地图的经纬度体系与我们的经纬度存在偏差&#xff0c;高德的与我们相符&#xff0c;应当使用高德地图JavaScript API。 因为是JavaScript…

Elasticsearch:特定领域的生成式 AI - 预训练、微调和 RAG

作者&#xff1a;来自 Elastic Steve Dodson 有多种策略可以将特定领域的知识添加到大型语言模型 (LLM) 中&#xff0c;并且作为积极研究领域的一部分&#xff0c;正在研究更多方法。 对特定领域数据集进行预训练和微调等方法使 LLMs 能够推理并生成特定领域语言。 然而&#…

Mysql的安装、使用、优势与教程

一.安装 1.在小皮的设置界面检测3306端口&#xff0c;保障3306端口可用&#xff1b; 2、在小皮的首面界面&#xff0c;启动MySQL&#xff1b; 3、进行环境变量设置&#xff0c;找到MySQL的路径&#xff0c;进行复制&#xff1b; 4、在Windows的搜索栏内&#xff0c;输入“环境…

Linux 驱动开发基础知识——总线设备驱动模型(七)

个人名片&#xff1a; &#x1f981;作者简介&#xff1a;学生 &#x1f42f;个人主页&#xff1a;妄北y &#x1f427;个人QQ&#xff1a;2061314755 &#x1f43b;个人邮箱&#xff1a;2061314755qq.com &#x1f989;个人WeChat&#xff1a;Vir2021GKBS &#x1f43c;本文由…

Linux——网络通信TCP通信常用的接口和tco服务demo

文章目录 TCP通信所需要的套接字socket()bind()listen()acceptconnect() 封装TCP socket TCP通信所需要的套接字 socket() socket()函数主要作用是返回一个描述符&#xff0c;他的作用就是打开一个网络通讯端口&#xff0c;返回的这个描述符其实就可以理解为一个文件描述符&a…

Vue核心基础5:数据监测、收集表单数据、过滤器

1 数据监测 【代码】 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>总结</title><scrip…