深入理解lambda表达式

在这里插入图片描述

深入理解ASP.NET Core中的中间件和Lambda表达式

var builder = WebApplication.CreateBuilder(args);
var app = builder.Build();

app.Use(async (context, next) =>
{
// Add code before request.

await next(context);// Add code after request.

});

这段C#代码是用于设置ASP.NET Core应用中的中间件。下面是详细解释:

  • app.Use: 这个方法是用来向应用的请求处理管道中添加一个中间件的。在ASP.NET Core中,中间件用于处理请求和响应。

  • async (context, next) =>: 这是一个异步匿名函数,它接受两个参数:contextnextcontextHttpContext,代表了当前的HTTP请求上下文。next是一个函数委托,调用它会将控制传递给管道中的下一个中间件。

  • // Add code before request.: 这里是在调用下一个中间件之前要执行的代码。这部分代码可以用于处理即将进入管道的请求,例如记录日志、检查请求头等。

  • await next(context);: 这行代码异步地调用管道中的下一个中间件,并等待其完成。这意味着在这个调用之后的代码会在所有的后续中间件处理完请求之后执行。

  • // Add code after request.: 这里是在管道中的下一个中间件执行完成后要执行的代码。这部分代码通常用于处理响应,比如修改HTTP头部、记录日志等。

总的来说,这段代码就是在ASP.NET Core的请求处理管道中添加了一个中间件,你可以在请求前后添加自定义的处理逻辑。

我可以这样理解,先创建lambda函数创建,然后再传参数给函数委托形参

可以这样理解,你的描述基本准确地概括了lambda表达式的工作原理。在C#中,lambda表达式本质上是一个匿名函数,它可以在不需要定义独立方法的情况下直接定义行为。这个匿名函数可以被赋值给一个委托类型的变量,或者直接作为一个委托类型的参数传递。

当你编写一个lambda表达式并将其传递给一个接受委托参数的方法时(如 app.Use),编译器会自动创建一个委托实例,并将你的lambda表达式作为该委托的目标。这意味着:

  1. 定义行为:首先,你定义了一个lambda表达式,它封装了你希望执行的代码块。

  2. 创建委托实例:然后,当你传递这个lambda表达式时,编译器会根据lambda表达式的签名自动创建一个匹配的委托实例。

  3. 传递委托:最后,这个委托实例被传递到方法中,作为参数。在方法内部,可以像调用普通方法一样调用这个委托。

这个过程在C#中是非常自然和无缝的,使得lambda表达式非常适合用于事件处理、LINQ查询以及中间件配置等场景。

app.use函数原型

抱歉造成了混淆,确实,我之前提供的 Func<Task> 的说明不准确。在ASP.NET Core 的中间件中,next 是一个 RequestDelegate 类型,它是一个处理 HTTP 请求的方法。其实际的签名是 Task RequestDelegate(HttpContext context)

app.Use 中使用的lambda表达式接收一个 HttpContext 和一个 RequestDelegate,并返回一个 Task。这个 RequestDelegate 是一个封装了下一个中间件调用的委托。

Lambda表达式的正确签名是这样的:

app.Use(Func<HttpContext, RequestDelegate, Task> middleware);

这里的 Func<HttpContext, RequestDelegate, Task> 指的是一个接收 HttpContextRequestDelegate 并返回 Task 的函数。因此,正确的lambda表达式应该看起来像这样:

app.Use(async (context, next) =>
{// 在调用下一个中间件之前执行的代码。await next(context); // 调用管道中的下一个中间件。// 在下一个中间件执行完成之后执行的代码。
});

在这个lambda表达式中:

  • context 是当前的 HttpContext,包含了所有HTTP请求的信息。
  • next 是一个委托,它调用请求管道中的下一个中间件。
  • async 关键字表示这个lambda表达式是异步的,它返回一个 Task
  • await 关键字用于等待异步操作 next(context) 完成,这通常意味着等待整个HTTP请求管道的其余部分完成处理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/258801.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文阅读:GamutMLP A Lightweight MLP for Color Loss Recovery

这篇文章是关于色彩恢复的一项工作&#xff0c;发表在 CVPR2023&#xff0c;其中之一的作者是 Michael S. Brown&#xff0c;这个老师是加拿大 York 大学的&#xff0c;也是 ISP 领域的大牛&#xff0c;现在好像也在三星研究院担任兼职&#xff0c;这个老师做了很多这种类似的工…

C++数据结构与算法——双指针法

C第二阶段——数据结构和算法&#xff0c;之前学过一点点数据结构&#xff0c;当时是基于Python来学习的&#xff0c;现在基于C查漏补缺&#xff0c;尤其是树的部分。这一部分计划一个月&#xff0c;主要利用代码随想录来学习&#xff0c;刷题使用力扣网站&#xff0c;不定时更…

STM32——OLED菜单

文章目录 一.补充二. 二级菜单代码 简介&#xff1a;首先在我的51 I2C里面有OLED详细讲解&#xff0c;本期代码从51OLED基础上移植过来的&#xff0c;可以先看完那篇文章&#xff0c;在看这个&#xff0c;然后按键我是用的定时器扫描不会堵塞程序,可以翻开我的文章有单独的定时…

免费chatgpt使用

基本功能如下&#xff1a; https://go.aigcplus.cc/auth/register?inviteCode3HCULH2UD

TensorRT转换onnx的Transpose算子遇到的奇怪问题

近来把一个模型导出为onnx并用onnx simplifier化简后转换为TensorRT engine遇到非常奇怪的问题&#xff0c;在我们的网络中有多个检测头时&#xff0c;转换出来的engine的推理效果是正常的&#xff0c;当网络中只有一个检测头时&#xff0c;转换出来的engine的推理效果奇差&…

OpenCV-42 直方图均匀化

目录 一、直方图均匀化原理 二、直方图均匀化在OpenCV中的运用 一、直方图均匀化原理 直方图均匀化是通过拉伸像素强度的分布范围&#xff0c;使得在0~255灰阶上的分布更加均匀&#xff0c;提高图像的对比度。达到改善图像主管视觉效果的目的。对比度较低的图像适合使用直方…

Flink理论—容错之状态

Flink理论—容错之状态 在 Flink 的框架中&#xff0c;进行有状态的计算是 Flink 最重要的特性之一。所谓的状态&#xff0c;其实指的是 Flink 程序的中间计算结果。Flink 支持了不同类型的状态&#xff0c;并且针对状态的持久化还提供了专门的机制和状态管理器。 Flink 使用…

HCIA-HarmonyOS设备开发认证V2.0-轻量系统内核基础-互斥锁mux

目录 一、互斥锁基本概念二、互斥锁运行机制三、互斥锁开发流程四、互斥锁使用说明五、互斥锁接口六、代码分析&#xff08;待续...&#xff09; 一、互斥锁基本概念 互斥锁又称互斥型信号量&#xff0c;是一种特殊的二值性信号量&#xff0c;用于实现对共享资源的独占式处理。…

Nginx (window)2024版 笔记 下载 安装 配置

前言 Nginx (engine x) 是一款轻量级的 Web 服务器 、反向代理&#xff08;Reverse Proxy&#xff09;服务器及电子邮件&#xff08;IMAP/POP3&#xff09;代理服务器。 反向代理方式是指以代理服务器来接受 internet 上的连接请求&#xff0c;然后将请求转发给内部网络上的服…

C++ //练习 6.3 编写你自己的fact函数,上机检查是否正确。

C Primer&#xff08;第5版&#xff09; 练习 6.3 练习 6.3 编写你自己的fact函数&#xff0c;上机检查是否正确。 环境&#xff1a;Linux Ubuntu&#xff08;云服务器&#xff09; 工具&#xff1a;vim 代码块 /********************************************************…

数据结构~二叉树(基础知识)

上一篇博客我们对树有了初步了解与学习&#xff0c;这篇我将初步学习二叉树&#xff01;&#xff01;&#xff08;新年快乐&#xff01;&#xff09; 目录 二叉树 1、定义&#xff1a; 2、特点&#xff1a; 3、基本形态&#xff1a; 4、二叉树的种类&#xff1a; &…

精工电联:定制精工线缆,赋能科技互联---致力于为客户提供卓越的连接线缆和连接器产品

精工电联 “定制精工线缆 &#xff0c;赋能科技互联”&#xff0c;精工电联致力于为高科技产业提供全方位、多维度的集成线缆解决方案。凭借深厚的研发实力和丰富的行业经验&#xff0c;精工电联已经成功地在工控设备、医疗设备、人工智能、新能源领域、轨道交通和超声波设备等…

数学建模【非线性规划】

一、非线性规划简介 通过分析问题判断是用线性规划还是非线性规划 线性规划&#xff1a;模型中所有的变量都是一次方非线性规划&#xff1a;模型中至少一个变量是非线性 非线性规划在形式上与线性规划非常类似&#xff0c;但在数学上求解却困难很多 线性规划有通用的求解准…

实战 | 使用CNN和OpenCV实现数字识别项目(步骤 + 源码)

导 读 本文主要介绍使用CNN和OpenCV实现数字识别项目,含详细步骤和源码。 前 言 在当今世界,深度学习和图像处理技术正在各个应用领域得到利用。在这篇博文中,我们将使用卷积神经网络 (CNN) 和 OpenCV 库完成数字识别项目。我们将逐步掌握该项目如何执行。 项目准…

Git 初学

目录 一、需求的产生 二、版本控制系统理解 1. 认识版本控制系统 2. 版本控制系统分类 &#xff08;1&#xff09;集中式版本控制系统 缺点&#xff1a; &#xff08;2&#xff09;分布式版本控制系统 三、初识 git 四、git 的使用 例&#xff1a;将 “ OLED文件夹 ”…

Nuxt3+Vue3(Composition API)+TS+Vite+Ant Design Vue 搭建

最近官网搭建选择了nuxtjs&#xff0c;由于框架更新了&#xff0c;其中语法也有很多变化&#xff0c;中间遇到了一些问题点做下总结。 nuxt3官方文档地址&#xff1a;https://nuxt.com/docs/getting-started/installation 安装 在安装Nuxt3之前&#xff0c;你需要保证你的nod…

如何使用iptables或者firewalld配置Linux系统的防火墙策略

在网络安全中&#xff0c;防火墙是一种关键的安全设备&#xff0c;用于保护计算机网络免受恶意攻击和未经授权的访问。在Linux系统中&#xff0c;我们可以使用iptables或者firewalld来配置防火墙策略。本文将介绍如何使用这两种工具来配置Linux系统的防火墙策略&#xff0c;包括…

java8-重构、测试、调试

8.1.1 改善代码的可读性 改善代码的可读性到底意味着什么?我们很难定义什么是好的可读性&#xff0c;因为这可能非常主观。通常的理解是&#xff0c;“别人理解这段代码的难易程度”。改善可读性意味着你要确保你的代码能非常容易地被包括自己在内的所有人理解和维护。为了确保…

php基础学习之函数

基本概念 是一种语法结构&#xff0c;将实现某一个功能的代码块封装到一个结构中&#xff0c;从而实现代码的重复利用 php函数的定义语法 &#xff08;与C/Java很类似&#xff0c;区别在于没有数据类型&#xff0c;因为php是弱类型语言&#xff09; function 函数名(参数){ //…

问题:内存时序参数 CASLatency 是() #学习方法#微信#微信

问题&#xff1a;内存时序参数 CASLatency 是&#xff08;&#xff09; A&#xff0e;行地址控制器延迟时间 B&#xff0e;列地址至行地址延迟时间 C&#xff0e;列地址控制器预充电时间 D&#xff0e;列动态时间 参考答案如图所示