今日Arxiv最热大模型论文:大语言模型真的理解上下文了吗?新研究揭示惊人发现

探索大型语言模型的上下文理解能力

在自然语言处理( Natural Language Processing,NLP)领域,理解上下文是把握人类语言的关键。近年来,大语言模型(LLMs)在展示对语言的理解方面取得了令人瞩目的成就。然而,尽管LLMs在各种NLP领域的评估中表现出色,对它们理解上下文特征的语言能力的探究却相对有限。本文介绍了一个通过适配现有数据集来评估生成模型的上下文理解基准。该基准包括四个不同的任务和九个数据集,所有任务都设计了旨在评估模型理解上下文能力的提示。首先,评估在上下文学习预训练场景下LLMs的表现。实验结果表明,预训练的密集模型在理解更微妙的上下文特征方面存在困难,尤其是与最新的微调模型相比。其次,随着LLMs压缩在研究和实际应用中的重要性日益增加,评估了在上下文学习设置下量化模型的上下文理解能力。我们发现,3位后训练量化导致我们基准上的性能不同程度的降低。我们对这些场景进行了广泛的分析,以支持实验结果。

论文标题:
Can Large Language Models Understand Context?

论文链接:
https://arxiv.org/pdf/2402.00858.pdf

声明:本期论文解读非人类撰写,全文由赛博马良「AI论文解读达人」智能体自主完成,经人工审核、配图后发布。

公众号「夕小瑶科技说」后台回复“智能体内测”获取智能体内测邀请链接!

评估大语言模型上下文理解能力的方法

观察最近发布的LLMs,如OPT、LLaMA和GPT-4,只在有限的基准上进行了评估,并且存在一个显著的缺点:它们忽略了评估中包含与话语相关的数据集,因此限制了对它们语言理解能力的全面评估。为了提供全面的评估,许多基准和数据集涉及了语言理解的各个方面,包括常识知识和诸如情感分析、自然语言推理、摘要、文本分类等语言能力。尽管这些基准需要上下文信息来有效地处理任务,但没有一个基准专门针对需要深入上下文理解的任务。

研究方法:构建上下文理解基准

1. 选择适合生成模型的数据集

本文通过适配现有数据集来构建一个上下文理解基准,以评估生成模型。该基准包括四项不同的任务和九个数据集,所有这些都设计了用于评估模型上下文理解能力的提示。

图片

2. 设计评估大型语言模型的四项任务

  • 核心指代消解:核心指代消解任务有助于实现对文本整体意义的连贯理解,因此在深入语言模型的核心指代关系和文档内上下文细微差别的能力方面起着关键作用。选择了两个核心指代数据集:WSC273和OntoNotes 5.0。

  • 对话状态跟踪:对话状态跟踪(Dialogue State Tracking,DST)是任务导向对话(Task-Oriented Dialogue,TOD)建模领域的一个重要任务,对话代理需要跟踪用户在对话过程中提供的关键信息。使用了MultiWOZ v2.2数据集进行测试。

    图片

  • 隐含话语关系分类:隐含话语关系分类任务要求模型正确识别两个话语单元(EDUs)之间的关系。PDTB3语料库将话语关系分类为四种类别:时间、条件、比较和扩展。

  • 查询重写:查询重写任务要求模型将用户在对话中的最后一句话重写为一个无需对话上下文即可理解的独立完整话语。包括了五个QR数据集:MuDoCo、QReCC、InCar、GECOR和CANARD。

    图片

实验设计:评估不同大小模型的上下文理解

1. 使用多种模型进行实验

为了评估不同大小模型在上下文理解任务中的表现,我们采用了多种模型进行实验。这些模型包括小型模型(如OPT系列中的125M至2.7B参数模型)、中型模型(LLaMA系列中的7B至65B参数模型)以及大型模型(如GPT-3.5-turbo)。我们在实验中采用了不同的设置,包括零次学习(zero-shot)、一次学习(one-shot)、五次学习(5-shot)、八次学习(8-shot)和十次学习(10-shot),以测试模型在不同情境下的表现。

2. 实验设置和评估指标

实验的设置包括四项不同的任务和九个数据集,每个任务都设计了专门的提示(prompts)以适应生成模型的评估。这些任务包括共指消解(Coreference Resolution)、对话状态跟踪(Dialogue State Tracking)、隐含话语关系分类(Implicit Discourse Relation Classification)和查询重写(Query Rewriting)。我们使用了官方的评估指标,如CoNLL F1分数、准确率(accuracy)、BLEU和ROUGE分数来评估模型的表现。

实验结果:大型模型在上下文理解任务中的表现

1. 不同模型在各项任务中的表现对比

实验结果显示,随着模型大小的增加,模型的性能也有所提高。

  • 共指消解任务中,大型模型在WSC273数据集上表现出色,表明它们能够有效处理简单的共指关系。然而,在处理文档级别的复杂共指链时,性能显著下降。

  • 对话状态跟踪任务中,OPT和LLaMA模型远远落后于GPT-3.5,表明这些模型在提取对话中的关键信息方面存在困难。

  • 隐含话语关系分类任务中,当模型大小超过7B时,分数有所提高,但即使是表现最好的GPT模型,其性能也远低于最先进的微调模型。

  • 查询重写任务中,小型和大型模型之间的差距非常大,例如OPT-125M甚至无法完成重写任务。

    图片

2. 模型压缩技术对上下文理解的影响

我们还评估了模型压缩技术对上下文理解的影响。3位后训练量化(3-bit post-training quantization)显示在我们的基准测试中导致不同程度的性能降低。然而,量化的30B LLaMA模型在所有任务中一致且显著地优于7B密集模型,尽管使用了3位量化。这表明在理解话语方面,更大的模型规模的好处超过了量化的影响。这一发现对于在磁盘和运行时约束的实际应用中部署大型语言模型非常有益。

深入分析:查询重写任务的案例研究

1. OPT与LLaMA模型在查询重写任务中的对比

在查询重写任务中,OPT和LLaMA模型的表现并不一致

  • LLaMA在其他任务中通常表现更好,但在查询重写任务中,当模型大小约为7B时,OPT模型的表现显著优于LLaMA,尤其是在五个查询重写数据集上。

  • 随着模型规模的增大至30B,LLaMA的表现开始超越OPT。

    图片

这表明在不同规模的模型或不同任务集上,两个模型家族的整体优劣并不明显。

2. 稠密模型与量化模型的性能比较

在查询重写任务中,稠密模型与量化模型的性能存在差异

  • 稠密的30B LLaMA模型在五个数据集上的错误数量显著少于7B稠密模型。然而,3比特的量化模型在重复错误方面的数量与7B稠密模型相似,这表明量化降低了模型理解上下文的能力

  • 在语言建模错误方面,30B稠密模型也显著优于7B稠密模型,而量化模型在这方面的错误略多于30B稠密模型,但远少于7B稠密模型。这说明3比特量化在保持模型的上下文学习能力方面是有效的

结论:大语言模型在上下文理解方面的挑战与潜力

1. 大语言模型上下文理解能力的现状

大语言模型在上下文理解任务中的表现表明,挑战依然是存在的。尽管在某些任务中,如简单的共指消解任务,较大的模型表现出了较好的性能,但在文档级共指消解和对话状态跟踪等复杂任务中,它们的性能显著下降。此外,量化技术虽然能够在减少模型大小的同时保持一定的性能,但在理解上下文方面的能力有所下降

2. 未来研究方向和实际应用的展望

未来的研究可以探索如何提高LLMs在上下文理解方面的性能,特别是在量化模型上。此外,研究可以扩展到多语言数据集和针对特定语言优化的模型,以更全面地评估LLMs的上下文理解能力。在实际应用方面,量化模型的研究为在资源受限的环境中部署大型模型提供了可能性,这对于实时语言处理应用尤为重要。

声明:本期论文解读非人类撰写,全文由赛博马良「AI论文解读达人」智能体自主完成,经人工审核、配图后发布。

公众号「夕小瑶科技说」后台回复“智能体内测”获取智能体内测邀请链接!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/259214.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文解读】Latency-Aware Collaborative Perception

Latency-Aware Collaborative Perception 摘要引言方法SystemSyncNet 实验 摘要 协作感知最近显示出提高单智能体感知感知能力的巨大潜力。现有的协同感知方法通常考虑理想的通信环境。然而,在实践中,通信系统不可避免地存在延迟问题,导致安…

Java_方法(重载方法签名等详解)

在之前我们学习C语言时,当我们想要重复使用某段代码的功能时,我们会将这段代码定义为一个函数,而在java中我们把这段重复使用的代码叫做方法。 方法的定义 类体的内容分为变量的声明和方法的定义,方法的定义包括两部分&#xff1…

基于协同过滤的时尚穿搭推荐系统

项目:基于协同过滤的时尚穿搭推荐系统 摘 要 基于协同过滤的时尚穿搭推荐系统是一种能自动从网络上收集信息的工具,可根据用户的需求定向采集特定数据信息的工具,本项目通过研究服饰流行的分析和预测的分析和预测信息可视化时尚穿搭推荐系统…

多线程---线程同步,线程通信

线程同步 1.概述 线程同步是多线程编程中的一个重要概念,它指的是在多线程环境中,通过一定的机制保证多个线程按照某种特定的方式正确、有序地执行。这主要是为了避免并发问题,如死锁、竞态条件、资源争用等,确保数据的一致性和完…

分布式文件系统 SpringBoot+FastDFS+Vue.js【一】

分布式文件系统 SpringBootFastDFSVue.js【一】 一、分布式文件系统1.1.文件系统1.2.什么是分布式文件系统1.3.分布式文件系统的出现1.3.主流的分布式文件系统1.4.分布式文件服务提供商1.4.1.阿里OSS1.4.2.七牛云存储1.4.3.百度云存储 二、fastDFS2.1.fastDSF介绍2.2.为什么要使…

【STM32】软件SPI读写W25Q64芯片

目录 W25Q64模块 W25Q64芯片简介 硬件电路 W25Q64框图 Flash操作注意事项 状态寄存器 ​编辑 指令集 INSTRUCTIONS​编辑 ​编辑 SPI读写W25Q64代码 硬件接线图 MySPI.c MySPI.h W25Q64 W25Q64.c W25Q64.h main.c 测试 SPI通信(W25Q64芯片简介&am…

【C++学习手札】多态:掌握面向对象编程的动态绑定与继承机制(深入)

🎬慕斯主页:修仙—别有洞天 ♈️今日夜电波:世界上的另一个我 1:02━━━━━━️💟──────── 3:58 🔄 ◀️ ⏸ ▶️ ☰ &am…

Python函数(一)

目录 一、定义函数 (一)向函数传递信息 (二)实参和形参 二、传递实参 (一)位置实参 (二)关键字实参 (三)默认值 (四)等效的函…

Code Composer Studio (CCS) - Comment (注释)

Code Composer Studio [CCS] - Comment [注释] References Add Block Comment: 选中几行代码 -> 鼠标右键 -> Source -> Add Block Comment shortcut key: Ctrl Shift / Remove Block Comment: 选中几行代码->鼠标右键->Source->Remove Block Comment s…

redis为什么使用跳跃表而不是树

Redis中支持五种数据类型中有序集合Sorted Set的底层数据结构使用的跳跃表,为何不使用其他的如平衡二叉树、b树等数据结构呢? 1,redis的设计目标、性能需求: redis是高性能的非关系型(NoSQL)内存键值数据…

12.QT文件对话框 文件的弹窗选择-QFileDialog

目录 前言: 技能: 内容: 1. 界面 2.信号槽 3.其他函数 参考: 前言: 通过按钮实现文件弹窗选择以及关联的操作 效果图就和平时用电脑弹出的选文件对话框一样 技能: QString filename QFileDialog::ge…

蓝桥杯官网填空题(寻找整数)

问题描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 有一个不超过 10^17 的正整数 n,知道这个数除以 2 至 49 后的余数如下表所示,求这个正整数最小是多少。 运行限制 最大运行时间:…

Pr教程1-8节笔记

第一课 认识PR以及PR的学习方法 学习任务: 1、熟练掌握PR软件,同时掌握剪辑技术以及常用于制作特效的效果器。 2、认识PR软件的名称、主要功能以及用途作用。 3、明白学习PR我们能做些什么以及PR的学习方法。 知识内容: 1、PR是专门用于视…

EasyUI动态加载组件

要实现如下的效果,在表格中显示进度条 主要是需要再次初始化组件,借用ChatGPT的意思是: 在许多 JavaScript UI 框架中,包括 EasyUI,在动态地创建或插入新的 DOM 元素后,通常需要手动初始化相关的组件或特性…

HarmonyOS—状态管理概述

在前文的描述中,我们构建的页面多为静态界面。如果希望构建一个动态的、有交互的界面,就需要引入“状态”的概念。 图1 效果图 上面的示例中,用户与应用程序的交互触发了文本状态变更,状态变更引起了UI渲染,UI从“He…

华为23年9月笔试原题,巨详细题解,附有LeetCode测试链接

文章目录 前言思路主要思路关于f函数的剖析Code就到这,铁子们下期见!!!! 前言 铁子们好啊!今天阿辉又给大家来更新新一道好题,下面链接是23年9月27的华为笔试原题,LeetCode上面的ha…

论文阅读-Pegasus:通过网络内一致性目录容忍分布式存储中的偏斜工作负载

论文名称:Pegasus: Tolerating Skewed Workloads in Distributed Storage with In-Network Coherence Directories 摘要 高性能分布式存储系统面临着由于偏斜和动态工作负载引起的负载不平衡的挑战。本文介绍了Pegasus,这是一个利用新一代可编程交换机…

cool Node后端 中实现中间件的书写

1.需求 在node后端中,想实现一个专门鉴权的文件配置,可以这样来解释 就是 有些接口需要token调用接口,有些接口不需要使用token 调用 这期来详细说明一下 什么是中间件中间件顾名思义是指在请求和响应中间,进行请求数据的拦截处理&#xf…

解锁Spring Boot中的设计模式—04.桥接模式:探索【桥接模式】的奥秘与应用实践!

桥接模式 桥接模式也称为桥梁模式、接口模式或者柄体(Handle and Body)模式,是将抽象部分与他的具体实现部分分离,使它们都可以独立地变化,通过组合的方式建立两个类之间的联系,而不是继承。 桥接模式是一种…

《区块链公链数据分析简易速速上手小册》第10章:未来趋势和挑战(2024 最新版)

文章目录 10.1 区块链技术的发展方向10.1.1 基础知识10.1.2 重点案例:构建一个简单的智能合约步骤1: 创建智能合约步骤2: 部署智能合约步骤3: 使用Python与智能合约交互结语10.1.3 拓展案例 1:探索 DeFi 应用准备工作实现步骤步骤1: 获取Compound市场数据步骤2: 分析借贷市场…