Java AQS(AbstractQueuedSynchronizer):深入剖析

🧑 博主简介:CSDN博客专家历代文学网(PC端可以访问:https://literature.sinhy.com/#/literature?__c=1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编程高并发设计Springboot和微服务,熟悉LinuxESXI虚拟化以及云原生Docker和K8s,热衷于探索科技的边界,并将理论知识转化为实际应用。保持对新技术的好奇心,乐于分享所学,希望通过我的实践经历和见解,启发他人的创新思维。在这里,我希望能与志同道合的朋友交流探讨,共同进步,一起在技术的世界里不断学习成长。
技术合作请加本人wx(注明来自csdn):foreast_sea

在这里插入图片描述


在这里插入图片描述

AQS(AbstractQueuedSynchronizer):深入剖析

前言

谈到并发,我们不得不说AQS(AbstractQueuedSynchronizer),所谓的AQS即是抽象的队列式的同步器,内部定义了很多锁相关的方法,我们熟知的ReentrantLockReentrantReadWriteLockCountDownLatchSemaphore等都是基于AQS来实现的。

我们先看下AQS相关的UML图:
在这里插入图片描述

思维导图:

在这里插入图片描述

AQS实现原理

AQS中 维护了一个volatile int state(代表共享资源)和一个FIFO线程等待队列(多线程争用资源被阻塞时会进入此队列)。

这里volatile能够保证多线程下的可见性,当state=1则代表当前对象锁已经被占有,其他线程来加锁时则会失败,加锁失败的线程会被放入一个FIFO的等待队列中,比列会被UNSAFE.park()操作挂起,等待其他获取锁的线程释放锁才能够被唤醒。

另外state的操作都是通过CAS来保证其并发修改的安全性。

具体原理我们可以用一张图来简单概括:

在这里插入图片描述

AQS 中提供了很多关于锁的实现方法,

  • getState():获取锁的标志state值
  • setState():设置锁的标志state值
  • tryAcquire(int):独占方式获取锁。尝试获取资源,成功则返回true,失败则返回false。
  • tryRelease(int):独占方式释放锁。尝试释放资源,成功则返回true,失败则返回false。

这里还有一些方法并没有列出来,接下来我们以ReentrantLock作为突破点通过源码和画图的形式一步步了解AQS内部实现原理。

目录结构

文章准备模拟多线程竞争锁、释放锁的场景来进行分析AQS源码:

三个线程(线程一、线程二、线程三)同时来加锁/释放锁

目录如下:

  • 线程一加锁成功时AQS内部实现
  • 线程二/三加锁失败时AQS中等待队列的数据模型
  • 线程一释放锁及线程二获取锁实现原理
  • 通过线程场景来讲解公平锁具体实现原理
  • 通过线程场景来讲解Condition中await()signal()实现原理

这里会通过画图来分析每个线程加锁、释放锁后AQS内部的数据结构和实现原理

场景分析

线程一加锁成功

如果同时有三个线程并发抢占锁,此时线程一抢占锁成功,线程二线程三抢占锁失败,具体执行流程如下:

在这里插入图片描述

此时AQS内部数据为:

在这里插入图片描述

线程二线程三加锁失败:

在这里插入图片描述

有图可以看出,等待队列中的节点Node是一个双向链表,这里SIGNALNodewaitStatus属性,Node中还有一个nextWaiter属性,这个并未在图中画出来,这个到后面Condition会具体讲解的。

具体看下抢占锁代码实现:

java.util.concurrent.locks.ReentrantLock .NonfairSync:

static final class NonfairSync extends Sync {final void lock() {if (compareAndSetState(0, 1))setExclusiveOwnerThread(Thread.currentThread());elseacquire(1);}protected final boolean tryAcquire(int acquires) {return nonfairTryAcquire(acquires);}
}

这里使用的ReentrantLock非公平锁,线程进来直接利用CAS尝试抢占锁,如果抢占成功state值回被改为1,且设置对象独占锁线程为当前线程。如下所示:

protected final boolean compareAndSetState(int expect, int update) {return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}protected final void setExclusiveOwnerThread(Thread thread) {exclusiveOwnerThread = thread;
}

线程二抢占锁失败

我们按照真实场景来分析,线程一抢占锁成功后,state变为1,线程二通过CAS修改state变量必然会失败。此时AQSFIFO(First In First Out 先进先出)队列中数据如图所示:

在这里插入图片描述

我们将线程二执行的逻辑一步步拆解来看:

java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire():

public final void acquire(int arg) {if (!tryAcquire(arg) &&acquireQueued(addWaiter(Node.EXCLUSIVE), arg))selfInterrupt();
}

先看看tryAcquire()的具体实现:
java.util.concurrent.locks.ReentrantLock .nonfairTryAcquire():

final boolean nonfairTryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();if (c == 0) {if (compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);return true;}}else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0)throw new Error("Maximum lock count exceeded");setState(nextc);return true;}return false;
}

nonfairTryAcquire()方法中首先会获取state的值,如果不为0则说明当前对象的锁已经被其他线程所占有,接着判断占有锁的线程是否为当前线程,如果是则累加state值,这就是可重入锁的具体实现,累加state值,释放锁的时候也要依次递减state值。

如果state为0,则执行CAS操作,尝试更新state值为1,如果更新成功则代表当前线程加锁成功。

线程二为例,因为线程一已经将state修改为1,所以线程二通过CAS修改state的值不会成功。加锁失败。

线程二执行tryAcquire()后会返回false,接着执行addWaiter(Node.EXCLUSIVE)逻辑,将自己加入到一个FIFO等待队列中,代码实现如下:

java.util.concurrent.locks.AbstractQueuedSynchronizer.addWaiter():

private Node addWaiter(Node mode) {    Node node = new Node(Thread.currentThread(), mode);Node pred = tail;if (pred != null) {node.prev = pred;if (compareAndSetTail(pred, node)) {pred.next = node;return node;}}enq(node);return node;
}

这段代码首先会创建一个和当前线程绑定的Node节点,Node为双向链表。此时等待对内中的tail指针为空,直接调用enq(node)方法将当前线程加入等待队列尾部:

private Node enq(final Node node) {for (;;) {Node t = tail;if (t == null) {if (compareAndSetHead(new Node()))tail = head;} else {node.prev = t;if (compareAndSetTail(t, node)) {t.next = node;return t;}}}
}

第一遍循环时tail指针为空,进入if逻辑,使用CAS操作设置head指针,将head指向一个新创建的Node节点。此时AQS中数据:

在这里插入图片描述

执行完成之后,headtailt都指向第一个Node元素。

接着执行第二遍循环,进入else逻辑,此时已经有了head节点,这里要操作的就是将线程二对应的Node节点挂到head节点后面。此时队列中就有了两个Node节点:

在这里插入图片描述

addWaiter()方法执行完后,会返回当前线程创建的节点信息。继续往后执行acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
逻辑,此时传入的参数为线程二对应的Node节点信息:

java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireQueued():

final boolean acquireQueued(final Node node, int arg) {boolean failed = true;try {boolean interrupted = false;for (;;) {final Node p = node.predecessor();if (p == head && tryAcquire(arg)) {setHead(node);p.next = null; // help GCfailed = false;return interrupted;}if (shouldParkAfterFailedAcquire(p, node) &&parkAndChecknIterrupt())interrupted = true;}} finally {if (failed)cancelAcquire(node);}
}private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {int ws = pred.waitStatus;if (ws == Node.SIGNAL)return true;if (ws > 0) {do {node.prev = pred = pred.prev;} while (pred.waitStatus > 0);pred.next = node;} else {compareAndSetWaitStatus(pred, ws, Node.SIGNAL);}return false;
}private final boolean parkAndCheckInterrupt() {LockSupport.park(this);return Thread.interrupted();
}

acquireQueued()这个方法会先判断当前传入的Node对应的前置节点是否为head,如果是则尝试加锁。加锁成功过则将当前节点设置为head节点,然后空置之前的head节点,方便后续被垃圾回收掉。

如果加锁失败或者Node的前置节点不是head节点,就会通过shouldParkAfterFailedAcquire方法
head节点的waitStatus变为了SIGNAL=-1,最后执行parkAndChecknIterrupt方法,调用LockSupport.park()挂起当前线程。

此时AQS中的数据如下图:

在这里插入图片描述

此时线程二就静静的待在AQS的等待队列里面了,等着其他线程释放锁来唤醒它。

线程三抢占锁失败

看完了线程二抢占锁失败的分析,那么再来分析线程三抢占锁失败就很简单了,先看看addWaiter(Node mode)方法:

private Node addWaiter(Node mode) {Node node = new Node(Thread.currentThread(), mode);Node pred = tail;if (pred != null) {node.prev = pred;if (compareAndSetTail(pred, node)) {pred.next = node;return node;}}enq(node);return node;
}

此时等待队列的tail节点指向线程二,进入if逻辑后,通过CAS指令将tail节点重新指向线程三。接着线程三调用enq()方法执行入队操作,和上面线程二执行方式是一致的,入队后会修改线程二对应的Node中的waitStatus=SIGNAL。最后线程三也会被挂起。此时等待队列的数据如图:

在这里插入图片描述

线程一释放锁

现在来分析下释放锁的过程,首先是线程一释放锁,释放锁后会唤醒head节点的后置节点,也就是我们现在的线程二,具体操作流程如下:

在这里插入图片描述

执行完后等待队列数据如下:

在这里插入图片描述

此时线程二已经被唤醒,继续尝试获取锁,如果获取锁失败,则会继续被挂起。如果获取锁成功,则AQS中数据如图:

在这里插入图片描述

接着还是一步步拆解来看,先看看线程一释放锁的代码:

java.util.concurrent.locks.AbstractQueuedSynchronizer.release()

public final boolean release(int arg) {if (tryRelease(arg)) {Node h = head;if (h != null && h.waitStatus != 0)unparkSuccessor(h);return true;}return false;
}

这里首先会执行tryRelease()方法,这个方法具体实现在ReentrantLock中,如果tryRelease执行成功,则继续判断head节点的waitStatus是否为0,前面我们已经看到过,headwaitStatueSIGNAL(-1),这里就会执行unparkSuccessor()方法来唤醒head的后置节点,也就是我们上面图中线程二对应的Node节点。

此时看ReentrantLock.tryRelease()中的具体实现:

protected final boolean tryRelease(int releases) {int c = getState() - releases;if (Thread.currentThread() != getExclusiveOwnerThread())throw new IllegalMonitorStateException();boolean free = false;if (c == 0) {free = true;setExclusiveOwnerThread(null);}setState(c);return free;
}

执行完ReentrantLock.tryRelease()后,state被设置成0,Lock对象的独占锁被设置为null。此时看下AQS中的数据:

在这里插入图片描述

接着执行java.util.concurrent.locks.AbstractQueuedSynchronizer.unparkSuccessor()方法,唤醒head的后置节点:

private void unparkSuccessor(Node node) {int ws = node.waitStatus;if (ws < 0)compareAndSetWaitStatus(node, ws, 0);Node s = node.next;if (s == null || s.waitStatus > 0) {s = null;for (Node t = tail; t != null && t != node; t = t.prev)if (t.waitStatus <= 0)s = t;}if (s != null)LockSupport.unpark(s.thread);
}

这里主要是将head节点的waitStatus设置为0,然后解除head节点next的指向,使head节点空置,等待着被垃圾回收。

此时重新将head指针指向线程二对应的Node节点,且使用LockSupport.unpark方法来唤醒线程二

被唤醒的线程二会接着尝试获取锁,用CAS指令修改state数据。
执行完成后可以查看AQS中数据:

在这里插入图片描述

此时线程二被唤醒,线程二接着之前被park的地方继续执行,继续执行acquireQueued()方法。

线程二唤醒继续加锁

final boolean acquireQueued(final Node node, int arg) {boolean failed = true;try {boolean interrupted = false;for (;;) {final Node p = node.predecessor();if (p == head && tryAcquire(arg)) {setHead(node);p.next = null; // help GCfailed = false;return interrupted;}if (shouldParkAfterFailedAcquire(p, node) &&parkAndCheckInterrupt())interrupted = true;}} finally {if (failed)cancelAcquire(node);}
}

此时线程二被唤醒,继续执行for循环,判断线程二的前置节点是否为head,如果是则继续使用tryAcquire()方法来尝试获取锁,其实就是使用CAS操作来修改state值,如果修改成功则代表获取锁成功。接着将线程二设置为head节点,然后空置之前的head节点数据,被空置的节点数据等着被垃圾回收

此时线程三获取锁成功,AQS中队列数据如下:

在这里插入图片描述

等待队列中的数据都等待着被垃圾回收。

线程二释放锁/线程三加锁

线程二释放锁时,会唤醒被挂起的线程三,流程和上面大致相同,被唤醒的线程三会再次尝试加锁,具体代码可以参考上面内容。具体流程图如下:

在这里插入图片描述

此时AQS中队列数据如图:

在这里插入图片描述

公平锁实现原理

上面所有的加锁场景都是基于非公平锁来实现的,非公平锁ReentrantLock的默认实现,那我们接着来看一下公平锁的实现原理,这里先用一张图来解释公平锁非公平锁的区别:

非公平锁执行流程:

在这里插入图片描述

这里我们还是用之前的线程模型来举例子,当线程二释放锁的时候,唤醒被挂起的线程三线程三执行tryAcquire()方法使用CAS操作来尝试修改state值,如果此时又来了一个线程四也来执行加锁操作,同样会执行tryAcquire()方法。

这种情况就会出现竞争,线程四如果获取锁成功,线程三仍然需要待在等待队列中被挂起。这就是所谓的非公平锁线程三辛辛苦苦排队等到自己获取锁,却眼巴巴的看到线程四插队获取到了锁。

公平锁执行流程:

在这里插入图片描述

公平锁在加锁的时候,会先判断AQS等待队列中是存在节点,如果存在节点则会直接入队等待,具体代码如下.

公平锁在获取锁是也是首先会执行acquire()方法,只不过公平锁单独实现了tryAcquire()方法:

#java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire():

public final void acquire(int arg) {if (!tryAcquire(arg) &&acquireQueued(addWaiter(Node.EXCLUSIVE), arg))selfInterrupt();
}

这里会执行ReentrantLock中公平锁的tryAcquire()方法

#java.util.concurrent.locks.ReentrantLock.FairSync.tryAcquire():

static final class FairSync extends Sync {protected final boolean tryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();if (c == 0) {if (!hasQueuedPredecessors() &&compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);return true;}}else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0)throw new Error("Maximum lock count exceeded");setState(nextc);return true;}return false;}
}

这里会先判断state值,如果不为0且获取锁的线程不是当前线程,直接返回false代表获取锁失败,被加入等待队列。如果是当前线程则可重入获取锁。

如果state=0则代表此时没有线程持有锁,执行hasQueuedPredecessors()判断AQS等待队列中是否有元素存在,如果存在其他等待线程,那么自己也会加入到等待队列尾部,做到真正的先来后到,有序加锁。具体代码如下:

#java.util.concurrent.locks.AbstractQueuedSynchronizer.hasQueuedPredecessors():

public final boolean hasQueuedPredecessors() {Node t = tail;Node h = head;Node s;return h != t &&((s = h.next) == null || s.thread != Thread.currentThread());
}

这段代码很有意思,返回false代表队列中没有节点或者仅有一个节点是当前线程创建的节点。返回true则代表队列中存在等待节点,当前线程需要入队等待。

在这里插入图片描述

先判断head是否等于tail,如果队列中只有一个Node节点,那么head会等于tail,接着判断head的后置节点,这里肯定会是null,如果此Node节点对应的线程和当前的线程是同一个线程,那么则会返回false,代表没有等待节点或者等待节点就是当前线程创建的Node节点。此时当前线程会尝试获取锁。

如果headtail不相等,说明队列中有等待线程创建的节点,此时直接返回true,如果只有一个节点,而此节点的线程和当前线程不一致,也会返回true

非公平锁公平锁的区别:
非公平锁性能高于公平锁性能。非公平锁可以减少CPU唤醒线程的开销,整体的吞吐效率会高点,CPU也不必取唤醒所有线程,会减少唤起线程的数量

非公平锁性能虽然优于公平锁,但是会存在导致线程饥饿的情况。在最坏的情况下,可能存在某个线程一直获取不到锁。不过相比性能而言,饥饿问题可以暂时忽略,这可能就是ReentrantLock默认创建非公平锁的原因之一了。

Condition实现原理

Condition简介

上面已经介绍了AQS所提供的核心功能,当然它还有很多其他的特性,这里我们来继续说下Condition这个组件。

Condition是在java 1.5中才出现的,它用来替代传统的Objectwait()notify()实现线程间的协作,相比使用Objectwait()notify(),使用Condition中的await()signal()这种方式实现线程间协作更加安全和高效。因此通常来说比较推荐使用Condition

其中AbstractQueueSynchronizer中实现了Condition中的方法,主要对外提供awaite(Object.wait())signal(Object.notify())调用。

Condition Demo示例

使用示例代码:

/*** ReentrantLock 实现源码学习* @author 一枝花算不算浪漫* @date 2020/4/28 7:20*/
public class ReentrantLockDemo {static ReentrantLock lock = new ReentrantLock();public static void main(String[] args) {Condition condition = lock.newCondition();new Thread(() -> {lock.lock();try {System.out.println("线程一加锁成功");System.out.println("线程一执行await被挂起");condition.await();System.out.println("线程一被唤醒成功");} catch (Exception e) {e.printStackTrace();} finally {lock.unlock();System.out.println("线程一释放锁成功");}}).start();new Thread(() -> {lock.lock();try {System.out.println("线程二加锁成功");condition.signal();System.out.println("线程二唤醒线程一");} finally {lock.unlock();System.out.println("线程二释放锁成功");}}).start();}
}

执行结果如下图:

在这里插入图片描述

这里线程一先获取锁,然后使用await()方法挂起当前线程并释放锁线程二获取锁后使用signal唤醒线程一

Condition实现原理图解

我们还是用上面的demo作为实例,执行的流程如下:

在这里插入图片描述

线程一执行await()方法:

先看下具体的代码实现,#java.util.concurrent.locks.AbstractQueuedSynchronizer.ConditionObject.await()

 public final void await() throws InterruptedException {if (Thread.interrupted())throw new InterruptedException();Node node = addConditionWaiter();int savedState = fullyRelease(node);int interruptMode = 0;while (!isOnSyncQueue(node)) {LockSupport.park(this);if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)break;}if (acquireQueued(node, savedState) && interruptMode != THROW_IE)interruptMode = REINTERRUPT;if (node.nextWaiter != null) // clean up if cancelledunlinkCancelledWaiters();if (interruptMode != 0)reportInterruptAfterWait(interruptMode);
}

await()方法中首先调用addConditionWaiter()将当前线程加入到Condition队列中。

执行完后我们可以看下Condition队列中的数据:

在这里插入图片描述

具体实现代码为:

private Node addConditionWaiter() {Node t = lastWaiter;if (t != null && t.waitStatus != Node.CONDITION) {unlinkCancelledWaiters();t = lastWaiter;}Node node = new Node(Thread.currentThread(), Node.CONDITION);if (t == null)firstWaiter = node;elset.nextWaiter = node;lastWaiter = node;return node;
}

这里会用当前线程创建一个Node节点,waitStatusCONDITION。接着会释放该节点的锁,调用之前解析过的release()方法,释放锁后此时会唤醒被挂起的线程二线程二会继续尝试获取锁。

接着调用isOnSyncQueue()方法判断当前节点是否为Condition队列中的头部节点,如果是则调用LockSupport.park(this)挂起Condition中当前线程。此时线程一被挂起,线程二获取锁成功。

具体流程如下图:

在这里插入图片描述

线程二执行signal()方法:

首先我们考虑下线程二已经获取到锁,此时AQS等待队列中已经没有了数据。

接着就来看看线程二唤醒线程一的具体执行流程:

public final void signal() {if (!isHeldExclusively())throw new IllegalMonitorStateException();Node first = firstWaiter;if (first != null)doSignal(first);
}

先判断当前线程是否为获取锁的线程,如果不是则直接抛出异常。
接着调用doSignal()方法来唤醒线程。

private void doSignal(Node first) {do {if ( (firstWaiter = first.nextWaiter) == null)lastWaiter = null;first.nextWaiter = null;} while (!transferForSignal(first) &&(first = firstWaiter) != null);
}final boolean transferForSignal(Node node) {if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))return false;Node p = enq(node);int ws = p.waitStatus;if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))LockSupport.unpark(node.thread);return true;
}/*** Inserts node into queue, initializing if necessary. See picture above.* @param node the node to insert* @return node's predecessor*/
private Node enq(final Node node) {for (;;) {Node t = tail;if (t == null) { // Must initializeif (compareAndSetHead(new Node()))tail = head;} else {node.prev = t;if (compareAndSetTail(t, node)) {t.next = node;return t;}}}
}

这里先从transferForSignal()方法来看,通过上面的分析我们知道Condition队列中只有线程一创建的一个Node节点,且waitStatueCONDITION,先通过CAS修改当前节点waitStatus为0,然后执行enq()方法将当前线程加入到等待队列中,并返回当前线程的前置节点。

加入等待队列的代码在上面也已经分析过,此时等待队列中数据如下图:

在这里插入图片描述

接着开始通过CAS修改当前节点的前置节点waitStatusSIGNAL,并且唤醒当前线程。此时AQS中等待队列数据为:

在这里插入图片描述

线程一被唤醒后,继续执行await()方法中的while循环。

public final void await() throws InterruptedException {if (Thread.interrupted())throw new InterruptedException();Node node = addConditionWaiter();int savedState = fullyRelease(node);int interruptMode = 0;while (!isOnSyncQueue(node)) {LockSupport.park(this);if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)break;}if (acquireQueued(node, savedState) && interruptMode != THROW_IE)interruptMode = REINTERRUPT;if (node.nextWaiter != null) // clean up if cancelledunlinkCancelledWaiters();if (interruptMode != 0)reportInterruptAfterWait(interruptMode);
}

因为此时线程一的waitStatus已经被修改为0,所以执行isOnSyncQueue()方法会返回false。跳出while循环。

接着执行acquireQueued()方法,这里之前也有讲过,尝试重新获取锁,如果获取锁失败继续会被挂起。直到另外线程释放锁才被唤醒。

final boolean acquireQueued(final Node node, int arg) {boolean failed = true;try {boolean interrupted = false;for (;;) {final Node p = node.predecessor();if (p == head && tryAcquire(arg)) {setHead(node);p.next = null; // help GCfailed = false;return interrupted;}if (shouldParkAfterFailedAcquire(p, node) &&parkAndCheckInterrupt())interrupted = true;}} finally {if (failed)cancelAcquire(node);}
}

此时线程一的流程都已经分析完了,等线程二释放锁后,线程一会继续重试获取锁,流程到此终结。

Condition总结

我们总结下Condition和wait/notify的比较:

  • Condition可以精准的对多个不同条件进行控制,wait/notify只能和synchronized关键字一起使用,并且只能唤醒一个或者全部的等待队列;

  • Condition需要使用Lock进行控制,使用的时候要注意lock()后及时的unlock(),Condition有类似于await的机制,因此不会产生加锁方式而产生的死锁出现,同时底层实现的是park/unpark的机制,因此也不会产生先唤醒再挂起的死锁,一句话就是不会产生死锁,但是wait/notify会产生先唤醒再挂起的死锁。

总结

这里用了一步一图的方式结合三个线程依次加锁/释放锁来展示了ReentrantLock的实现方式和实现原理,而ReentrantLock底层就是基于AQS实现的,所以我们也对AQS有了深刻的理解。

另外还介绍了公平锁非公平锁的实现原理,Condition的实现原理,基本上都是使用源码+绘图的讲解方式,尽量让大家更容易去理解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/26125.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥备赛(七)- 函数与递归(上)

一、函数是什么 数学中 &#xff0c; 我们其实就见过函数的概念 &#xff0c; 比如 : 一次函数 y kx b &#xff0c; k 和 b 都是常数 &#xff0c; 给一个任意的x 就得到一个 y 值。 其实C/C语言中就引入了函数(function&#xff09;的概念 &#xff0c; 有些翻译成&#…

【java】@Transactional导致@DS注解切换数据源失效

最近业务中出现了多商户多租户的逻辑&#xff0c;所以需要分库&#xff0c;项目框架使用了mybatisplus所以我们自然而然的选择了同是baomidou开发的dynamic.datasource来实现多数据源的切换。在使用初期程序运行都很好&#xff0c;但之后发现在调用com.baomidou.mybatisplus.ex…

DeepSeek 助力 Vue3 开发:打造丝滑的网格布局(Grid Layout)

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 Deep…

Ragflow与Dify之我见:AI应用开发领域的开源框架对比分析

本文详细介绍了两个在AI应用开发领域备受关注的开源框架&#xff1a;Ragflow和Dify。Ragflow专注于构建基于检索增强生成&#xff08;RAG&#xff09;的工作流&#xff0c;强调模块化和轻量化&#xff0c;适合处理复杂文档格式和需要高精度检索的场景。Dify则旨在降低大型语言模…

形式化数学编程在AI医疗中的探索路径分析

一、引言 1.1 研究背景与意义 在数字化时代,形式化数学编程和 AI 形式化医疗作为前沿领域,正逐渐改变着我们的生活和医疗模式。形式化数学编程是一种运用数学逻辑和严格的形式化语言来描述和验证程序的技术,它通过数学的精确性和逻辑性,确保程序的正确性和可靠性。在软件…

JVM线程分析详解

java线程状态&#xff1a; 初始(NEW)&#xff1a;新创建了一个线程对象&#xff0c;但还没有调用start()方法。运行(RUNNABLE)&#xff1a;Java线程中将就绪&#xff08;ready&#xff09;和运行中&#xff08;running&#xff09;两种状态笼统的称为“运行”。 线程对象创建…

deepseek+mermaid【自动生成流程图】

成果&#xff1a; 第一步打开deepseek官网(或百度版&#xff08;更快一点&#xff09;)&#xff1a; 百度AI搜索 - 办公学习一站解决 第二步&#xff0c;生成对应的Mermaid流程图&#xff1a; 丢给deepseek代码&#xff0c;或题目要求 生成mermaid代码 第三步将代码复制到me…

C大调中的A4=440Hz:音乐、物理与认知的交响

引言&#xff1a; 在音乐的世界里&#xff0c;每个音符都是一个独特的存在&#xff0c;它们按照特定的规则和比例相互交织&#xff0c;创造出和谐的旋律。在众多音符中&#xff0c;A4440Hz作为一个国际标准音高&#xff0c;它在C大调中扮演着“la”的角色。这一看似简单的对应关…

ASPNET Core笔试题 【面试宝典】

文章目录 一、如何在ASP.NET Core中激活Session功能&#xff1f;二、什么是中间件&#xff1f;三、ApplicationBuilder的Use和Run方法有什么区别&#xff1f;四、如何使TagHelper在元素这一层上失效&#xff1f;五、什么是ASP.NET Core&#xff1f;六、ASP.NET Core中AOP的支持…

使用DeepSeek实现自动化编程:类的自动生成

目录 简述 1. 通过注释生成C类 1.1 模糊生成 1.2 把控细节&#xff0c;让结果更精准 1.3 让DeepSeek自动生成代码 2. 验证DeepSeek自动生成的代码 2.1 安装SQLite命令行工具 2.2 验证DeepSeek代码 3. 测试代码下载 简述 在现代软件开发中&#xff0c;自动化编程工具如…

MapReduce编程模型

MapReduce编程模型 理解MapReduce编程模型独立完成一个MapReduce程序并运行成功了解MapReduce工程流程掌握并描述出shuffle全过程&#xff08;面试&#xff09;独立编写课堂及作业中的MR程序理解并解决数据倾斜 1. MapReduce编程模型 Hadoop架构图 Hadoop由HDFS分布式存储、M…

【实战 ES】实战 Elasticsearch:快速上手与深度实践-1.3.2Kibana可视化初探

&#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 文章大纲 10分钟快速部署Kibana可视化平台1. Kibana与Elasticsearch关系解析1.1 架构关系示意图1.2 核心功能矩阵 2. 系统环境预检2.1 硬件资源配置2.2 软件依赖清单 3. Docker快速部…

基于YOLO11深度学习的遥感视角农田检测与分割系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…

Redis7——进阶篇(一)

前言&#xff1a;此篇文章系本人学习过程中记录下来的笔记&#xff0c;里面难免会有不少欠缺的地方&#xff0c;诚心期待大家多多给予指教。 基础篇&#xff1a; Redis&#xff08;一&#xff09;Redis&#xff08;二&#xff09;Redis&#xff08;三&#xff09;Redis&#x…

ST-LINK端口连接失败,启动GDB server失败的问题处理方法,有效

目录 1. 问题描述2. 解决办法2.1 后台关闭2.2 后台关闭无法找到ST进程或者关闭后未解决 1. 问题描述 报错&#xff1a; Failed to bind to port 61235, error code -1: No error Failure starting SWV server on TCP port: 61235 Failed to bind to port 61234, error code -1…

Helix——Figure 02发布的通用人形机器人控制VLA:不用微调即可做多个任务的快与慢双系统,让两个机器人协作干活(含清华HiRT详解)

前言 过去一周&#xff0c;我花了很大的心思、力气&#xff0c;把deepseek的GRPO、MLA算法的代码解析通透&#xff0c;比如GRPO与PPO的详细对比&#xff0c;再比如MLA中&#xff0c;图片 公式 代码的一一对应&#xff0c;详见此专栏《火爆全球的DeepSeek系列模型》 2.20日晚&…

性能测试测试策略制定|知名软件测评机构经验分享

随着互联网产品的普及&#xff0c;产品面对的用户量级也越来越大&#xff0c;能抗住指数级增长的瞬间访问量以及交易量是保障购物体验是否顺畅的至关重要的一环&#xff0c;而我们的性能测试恰恰也是为此而存在的。 性能测试是什么呢&#xff1f;性能测试要怎么测呢&#xff1f…

BigDecimal 为什么可以不丢失精度?

本文已收录至Java面试网站&#xff1a;https://topjavaer.cn 大家好&#xff0c;今天咱们来聊聊 Java 中的 BigDecimal。在金融领域&#xff0c;数据的精确性相当重要&#xff0c;一个小数点的误差可能就意味着几百万甚至几千万的损失。而 BigDecimal 就是专门用来解决这种高精…

杰发科技AC7801——滴答定时器获取时间戳

1. 滴答定时器 杰发科技7801内部有一个滴答定时器&#xff0c;该定时器是M0核自带的&#xff0c;因此可以直接用该定时器来获取时间戳。 同样&#xff0c;7803也可以使用该方式获取时间戳。 2. 滴答定时器原理 SysTick是一个24位的递减计数器&#xff0c;它从预设的重装载值…

Cursor+pycharm接入Codeuim(免费版),Tab自动补全功能平替

如题&#xff0c;笔者在Cursor中使用pycharm写python程序&#xff0c;试用期到了Tab自动补全功能就不能用了&#xff0c;安装Codeuim插件可以代替这个功能。步骤如下&#xff1a; 1. 在应用商店中搜索扩展Codeuim&#xff0c;下载安装 2. 安装完成后左下角会弹出提示框&#x…