从kafka如何保证数据一致性看通常数据一致性设计

一、前言

在数据库系统中有个概念叫事务,事务的作用是为了保证数据的一致性,意思是要么数据成功,要么数据失败,不存在数据操作了一半的情况,这就是数据的一致性。在很多系统或者组件中,很多场景都需要保证数据的一致性,有的是高度的一致性。特别是在交易系统等这样场景。有些组件的数据不一定需要高度保证数据的一致性,比如日志系统。本节从从kafka如何保证数据一致性看通常数据一致性设计。

二、kafka那些环节存在数据不一致性

  1. 数据复制:在Kafka中,数据从主节点(leader)复制到从节点(follower)的过程中,由于网络延迟、节点故障或其他原因,可能导致从节点未能及时获取或处理主节点的数据变更,从而产生数据不一致。
  2. 消息提交:Kafka中的消息提交涉及多个阶段,包括生产者发送消息、消息被写入日志、消息被复制到从节点等。如果在这个过程中发生错误或异常,可能导致消息丢失或重复,进而引发数据不一致。
  3. 消费者处理:消费者在处理消息时,如果因为某些原因(如网络中断、消费者进程崩溃等)未能成功处理消息,而消息又被重新投递给其他消费者处理,也可能导致数据不一致。
  4. 分区重新分配:在Kafka中,如果分区的leader节点发生故障,Kafka会触发分区重新分配,将leader切换到其他节点。在这个过程中,如果切换不及时或切换过程中发生错误,可能导致数据不一致。

三、kafka如何保证数据一致性(内容摘自半亩方塘立身)

我们知道Kafka架构如下,主要由 Producer、Broker、Consumer 三部分组成。一条消息从生产到消费完成这个过程,可以划分三个阶段,生产阶段、存储阶段、消费阶段。

生产阶段: 在这个阶段,从消息在 Producer 创建出来,经过网络传输发送到 Broker 端。

存储阶段: 在这个阶段,消息在 Broker 端存储,如果是集群,消息会在这个阶段被复制到其他的副本上。

消费阶段: 在这个阶段,Consumer 从 Broker 上拉取消息,经过网络传输发送到Consumer上。

那么如何保证消息不丢我们可以从这三部分来分析。

消息传递语义

在深度剖析消息丢失场景之前,我们先来聊聊「消息传递语义」到底是个什么玩意?

所谓的消息传递语义是 Kafka 提供的 Producer 和 Consumer 之间的消息传递过程中消息传递的保证性。主要分为三种。

作者:半亩方塘立身
链接:https://zhuanlan.zhihu.com/p/682321210
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

1. 首先当 Producer 向 Broker 发送数据后,会进行 commit,如果 commit 成功,由于 Replica 副本机制的存在,则意味着消息不会丢失,但是 Producer 发送数据给 Broker 后,遇到网络问题而造成通信中断,那么 Producer 就无法准确判断该消息是否已经被提交(commit),这就可能造成 at least once 语义。

2. 在 Kafka 0.11.0.0 之前, 如果 Producer 没有收到消息 commit 的响应结果,它只能重新发送消息,确保消息已经被正确的传输到 Broker,重新发送的时候会将消息再次写入日志中;而在 0.11.0.0 版本之后, Producer 支持幂等传递选项,保证重新发送不会导致消息在日志出现重复。为了实现这个, BrokerProducer 分配了一个ID,并通过每条消息的序列号进行去重。也支持了类似事务语义来保证将消息发送到多个 Topic 分区中,保证所有消息要么都写入成功,要么都失败,这个主要用在 Topic 之间的 exactly once 语义。 其中启用幂等传递的方法配置enable.idempotence = true启用事务支持的方法配置:设置属性 transcational.id = "指定值"

3. 从 Consumer 角度来剖析, 我们知道 Offset 是由 Consumer 自己来维护的, 如果 Consumer 收到消息后更新 Offset, 这时 Consumer 异常 crash 掉, 那么新的 Consumer 接管后再次重启消费,就会造成 at most once 语义(消息会丢,但不重复)。

4. 如果 Consumer 消费消息完成后, 再更新 Offset,如果这时 Consumer crash 掉,那么新的 Consumer 接管后重新用这个 Offset 拉取消息, 这时就会造成 at least once 语义(消息不丢,但被多次重复处理)。

总结: 默认 Kafka 提供「at least once」语义的消息传递,允许用户通过在处理消息之前保存 Offset的方式提供 「at mostonce」 语义。如果我们可以自己实现消费幂等,理想情况下这个系统的消息传递就是严格的「exactly once」, 也就是保证不丢失、且只会被精确的处理一次,但是这样是很难做到的。

接下来我们从生产阶段、存储阶段、消费阶段这几方面看下kafka如何保证消息不丢失。

生产阶段

通过深入解析Kafka消息发送过程我们知道Kafka生产者异步发送消息并返回一个Future,代表发送结果。首先需要我们获取返回结果判断是否发送成功。

// 异步发送消息,并设置回调函数 
producer.send(record, new Callback() { @Override public void onCompletion(RecordMetadata metadata, Exception exception) {if (exception != null) { System.err.println("消息发送失败: " + exception.getMessage()); } else { System.out.println("消息发送成功到主题: " + metadata.topic() + ", 分区: " + metadata.partition() + ", 偏移量: " + metadata.offset()); } } 
});

 
 

消息队列通过最常用的请求确认机制,来保证消息的可靠传递:当你的代码调用发消息方法时,消息队列的客户端会把消息发送到 Broker,Broker 收到消息后,会给客户端返回一个确认响应,表明消息已经收到了。客户端收到响应后,完成了一次正常消息的发送。

Producer(生产者)保证消息不丢失的方法:

1. 发送确认机制:Producer可以使用Kafka的acks参数来配置发送确认机制。通过设置合适的acks参数值,Producer可以在消息发送后等待Broker的确认。确认机制提供了不同级别的可靠性保证,包括:

• acks=0:Producer在发送消息后不会等待Broker的确认,这可能导致消息丢失风险。

• acks=1:Producer在发送消息后等待Broker的确认,确保至少将消息写入到Leader副本中。

• acks=all或acks=-1:Producer在发送消息后等待Broker的确认,确保将消息写入到所有ISR(In-Sync Replicas)副本中。这提供了最高的可靠性保证。

2. 消息重试机制:Producer可以实现消息的重试机制来应对发送失败或异常情况。如果发送失败,Producer可以重新发送消息,直到成功或达到最大重试次数。重试机制可以保证消息不会因为临时的网络问题或Broker故障而丢失。

 
 

Broker存储阶段

正常情况下,只要 Broker 在正常运行,就不会出现丢失消息的问题,但是如果 Broker 出现了故障,比如进程死掉了或者服务器宕机了,还是可能会丢失消息的。

在kafka高性能设计原理中我们了解到kafka为了提高性能用到了 Page Cache 技术.在读写磁盘日志文件时,其实操作的都是内存,然后由操作系统决定什么时候将 Page Cache 里的数据真正刷入磁盘。如果内存中数据还未刷入磁盘服务宕机了,这个时候还是会丢消息的。

为了最大程度地降低数据丢失的可能性,我们可以考虑以下方法:

  1. 持久化配置优化:可以通过调整 Kafka 的持久化配置参数来控制数据刷盘的频率,从而减少数据丢失的可能性。例如,可以降低 flush.messagesflush.ms 参数的值,以更频繁地刷写数据到磁盘。
  2. 副本因子增加:在 Kafka 中,可以为每个分区设置多个副本,以提高数据的可靠性。当某个 broker 发生故障时,其他副本仍然可用,可以避免数据丢失。
  3. 使用acks=all:在生产者配置中,设置 acks=all 可以确保消息在所有ISR(In-Sync Replicas)中都得到确认后才被视为发送成功。这样可以确保消息被复制到多个副本中,降低数据丢失的风险。
  4. 备份数据:定期备份 Kafka 的数据,以便在发生灾难性故障时可以进行数据恢复。

消费阶段

消费阶段采用和生产阶段类似的确认机制来保证消息的可靠传递,客户端从 Broker 拉取消息后,执行用户的消费业务逻辑,成功后,才会给 Broker 发送消费确认响应。如果 Broker 没有收到消费确认响应,下次拉消息的时候还会返回同一条消息,确保消息不会在网络传输过程中丢失,也不会因为客户端在执行消费逻辑中出错导致丢失。

  1. 自动提交位移:Consumer可以选择启用自动提交位移的功能。当Consumer成功处理一批消息后,它会自动提交当前位移,标记为已消费。这样即使Consumer发生故障,它可以使用已提交的位移来恢复并继续消费之前未处理的消息。
  2. 手动提交位移:Consumer还可以选择手动提交位移的方式。在消费一批消息后,Consumer可以显式地提交位移,以确保处理的消息被正确记录。这样可以避免重复消费和位移丢失的问题。
作者:半亩方塘立身
链接:https://zhuanlan.zhihu.com/p/682321210
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。// 创建消费者实例
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);// 订阅主题
consumer.subscribe(Collections.singletonList(topic));try {while (true) {// 消费消息ConsumerRecords<String, String> records = consumer.poll(100);for (ConsumerRecord<String, String> record : records) {// 处理消息逻辑System.out.println("消费消息:Topic = " + record.topic() +", Partition = " + record.partition() +", Offset = " + record.offset() +", Key = " + record.key() +", Value = " + record.value());// 手动提交位移TopicPartition topicPartition = new TopicPartition(record.topic(), record.partition());OffsetAndMetadata offsetMetadata = new OffsetAndMetadata(record.offset() + 1);consumer.commitSync(Collections.singletonMap(topicPartition, offsetMetadata));}}
} catch (Exception e) {e.printStackTrace();
} finally {consumer.close();
}

 四、数据一致系统设计特点

从kafka如何保证数据一致性看通常数据一致性设计,一般保证数据一致性,需要通过成功后commit的操作,消费过程中记录小标。成功与失败的环节都记上标志。

Kafka作为一个分布式发布-订阅消息系统,其数据一致性的系统设计特点主要包括以下几个方面:

  1. 分区与副本机制:Kafka将数据分成多个分区(Partition),每个分区在集群中有多个副本(Replica)。这些副本分布在不同的Broker上,以实现数据的冗余备份和高可用性。当某个Broker发生故障时,其他Broker上的副本可以接管服务,保证数据的持续可用。
  2. ISR(In-Sync Replicas)机制:ISR是Kafka中用于维护数据一致性的重要机制。它包含所有与Leader保持同步的副本。当ISR中的副本数量不足时,Kafka会暂停写入操作,以防止数据不一致。只有当ISR中的副本数量恢复到一定数量时,才会恢复写入操作。
  3. 消息提交确认:生产者发送消息到Kafka时,需要等待消息被写入ISR中的副本并得到确认,以确保消息被成功存储。同时,消费者在处理消息时也需要定期提交偏移量(Offset),以便在发生故障时能够从正确的位置继续消费。
  4. 原子性操作:Kafka保证消息在分区内的顺序性和原子性。这意味着在同一分区内的消息会按照发送的顺序被消费,且不会被其他消息插入打断。这有助于保证数据的一致性和正确性。
  5. 容错处理:当Kafka集群中的节点发生故障时,Kafka会自动进行故障转移和恢复操作。这包括从ISR中选择新的Leader、重新同步数据等,以确保数据的持续可用和一致性。

总之,Kafka通过分区与副本机制、ISR机制、消息提交确认、原子性操作和容错处理等手段,确保了其数据一致性的系统设计特点。这些设计使得Kafka能够在分布式环境中实现高吞吐量、持久化存储、可扩展性和高可靠性等特性,从而满足各种复杂场景下的数据一致性需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/261815.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开源LLMs导览:工作原理、顶级LLM列表对比

目录 一、开源 LLM 是什么意思&#xff1f;二、开源LLM如何工作&#xff1f;2.1 预训练2.2 代币化2.3 开源LLM的微调2.4 输入编码2.5 训练与优化2.6 推理 三、开源LLM对组织的好处3.1 增强的数据安全和隐私3.2 节约成本3.3 减少供应商依赖性3.4 代码透明度 四、哪种LLM模式最好…

51_蓝桥杯_独立按键

一 电路 注意&#xff1a;J5跳帽接到2~3引脚&#xff0c;使按键S4-S5四个按键的另外一端接地&#xff0c;从而成为4个独立按键。 二 独立按键工作原理 三 代码 代码1&#xff1a;按下S7点亮L1指示灯&#xff0c;松开按键&#xff0c;指示灯熄灭&#xff0c;按下S6点亮L2指示灯…

18.贪心算法

排序贪心 区间贪心 删数贪心 统计二进制下有多少1 int Getbit_1(int n){int cnt0;while(n){nn&(n-1);cnt;}return cnt; }暴力加一维前缀和优化 #include <iostream> #include <climits> using namespace std; #define int long long const int N2e510; in…

three.js 3D可视化地图

threejs地图 可视化地图——three.js实现 this.provinceInfo document.getElementById(provinceInfo); // 渲染器 this.renderer new THREE.WebGLRenderer({antialias: true }); this.renderer.setSize(window.innerWidth, window.innerHeight); this.container.appendChild…

智能风控体系之迁徙率应用

为了评估银行资产质量&#xff0c;此前市场和监管层广泛采取不良贷款率作为银行业资产质量的定量指标&#xff0c;然而这只能看出银行资产质量的现状&#xff0c;但是缺乏对未来发展趋势的指导&#xff0c;因此出现了贷款迁徙率指标&#xff0c;用以判断银行不良资产规模的变化…

Linux 权限详解

目录 一、权限的概念 二、权限管理 三、文件访问权限的相关设置方法 3.1chmod 3.2chmod ax /home/abc.txt 一、权限的概念 Linux 下有两种用户&#xff1a;超级用户&#xff08; root &#xff09;、普通用户。 超级用户&#xff1a;可以再linux系统下做任何事情&#xff…

论文精读--word2vec

word2vec从大量文本语料中以无监督方式学习语义知识&#xff0c;是用来生成词向量的工具 把文本分散嵌入到另一个离散空间&#xff0c;称作分布式表示&#xff0c;又称为词嵌入&#xff08;word embedding&#xff09;或词向量 Abstract We propose two novel model architec…

跨界计算与控制,强化显控和UI, 君正MPU再添新旗舰--Ingenic MPU X2600隆重发布

近日&#xff0c;北京君正隆重发布MPU芯片新产品X2600。该产品以商业和工业应用的数个细分领域为重点目标市场&#xff0c;兼顾通用处理器应用需求。无论从CPU结构的设计&#xff0c;还是专门控制器和接口的配备&#xff0c;都体现了北京君正MPU团队“技术路线上追求自主跨界&a…

C#知识点-15(匿名函数、使用委托进行窗体传值、反射)

匿名函数 概念&#xff1a;没有名字的函数&#xff0c;一般情况下只调用一次。它的本质就是一个方法&#xff0c;虽然我们没有定义这个方法&#xff0c;但是编译器会把匿名函数编译成一个方法 public delegate void Del1();//无参数无返回值的委托public delegate void Del2(s…

免费搭建个人网盘

免费搭建一个属于个人的网盘。 服务端 详情请参考原网站的服务端下载和安装虚拟磁盘Fuse4Ui可以支持把网盘内容挂载成系统的分区&#xff1b; 挂载工具效果图&#xff1a;应用端应用端的下载 效果图

Meta 发布 MMCSG (多模态智能眼镜对话数据集)

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

《图解设计模式》笔记(一)适应设计模式

图灵社区 - 图解设计模式 - 随书下载 评论区 雨帆 2017-01-11 16:14:04 对于设计模式&#xff0c;我个人认为&#xff0c;其实代码和设计原则才是最好的老师。理解了 SOLID&#xff0c;如何 SOLID&#xff0c;自然而然地就用起来设计模式了。Github 上有一个 tdd-training&…

科技快讯:鸿道Intewell操作系统突破国际垄断,引领工控新革命

科东软件Intewell鸿道工业操作系统&#xff0c;已在多种严苛环境下运行检验&#xff0c;并应用于工业控制、智能制造、汽车电子、轨道交通、能源电力、航天航空等实时性要求极高的领域&#xff0c;历经30年的不懈努力和研发迭代&#xff0c;在功能和性能上可以替代风和VxWorks操…

RTP 实时运输协议

目录 1 实时运输协议 RTP 1.1 RTP 的层次 1.2 RTP 分组的首部格式 2 实时运输控制协议 RTCP 2.1 RTCP 分组 1 实时运输协议 RTP 实时运输协议 RTP (Real-time Transport Protocol) 为实时应用提供端到端的运输&#xff0c;但不提供任何服务质量的保证。 需要发送的多媒体…

【Linux系统化学习】深入理解匿名管道(pipe)和命名管道(fifo)

目录 进程间通信 进程间通信目的 进程间通信的方式 管道 System V IPC&#xff08;本地通信&#xff09; POSIX IPC&#xff08;网络通信&#xff09; 管道 什么是管道 匿名管道 匿名管道的创建 匿名管道的使用 匿名管道的四种情况 匿名管道的五种特性 命名管道 …

瑞_Redis_初识Redis(含安装教程)

文章目录 1 初识Redis1.1 认识NoSQL1.1.1 结构化与非结构化1.1.2 关联和非关联1.1.3 查询方式1.1.4 事务1.1.5 总结 1.2 认识Redis1.2.1 介绍1.2.2 特征1.2.3 优势 1.3 安装Redis ★★★1.3.1 Linux安装Redis1.3.1.1 安装Redis依赖 1.3.2 Windows安装Redis1.3.2.1 安装步骤1.3.…

抛弃chatgpt,使用微软的Cursor提升coding效率

Whats Cursor? Cursor编辑器是一个基于GPT-4的代码编辑器&#xff0c;它可以根据用户的自然语言指令或者正在编辑的代码上下文为用户提供代码建议&#xff0c;支持多种编程语言&#xff0c;如Python、Java、C/C#、go等。Cursor编辑器还可以帮助用户重构、理解和优化代码&…

Code Control Process

代码提交流程&#xff08;Code Control Process&#xff09; VSS&#xff0c;早前定义的版本控制&#xff0c;没有谁对不对&#xff0c;但是要根本解决冲突&#xff0c;特别人多的时候&#xff0c;50个人的时候&#xff0c;处理冲突时非常的麻烦的&#xff0c;改半天还改错了&…

vulfocus靶场搭建

vulfocus靶场搭建 什么是vulfocus搭建教程靶场配置场景靶场编排靶场优化 什么是vulfocus Vulfocus 是一个漏洞集成平台&#xff0c;将漏洞环境 docker 镜像&#xff0c;放入即可使用&#xff0c;开箱即用&#xff0c;我们可以通过搭建该靶场&#xff0c;简单方便地复现一些框架…

Java面试题之分布式/微服务篇

经济依旧不景气啊&#xff0c;如此大环境下Java还是这么卷&#xff0c;又是一年一次的金三银四。 兄弟们&#xff0c;你准备好了吗&#xff1f;冲冲冲&#xff01;欧里给&#xff01; 分布式/微服务相关面试题解 题一&#xff1a;CAP理论&#xff0c;BASE理论题二&#xff1a;…