欢迎 Gemma: Google 最新推出开源大语言模型

aab1479238483f4cebdddb3882f71c93.png

今天,Google 发布了一系列最新的开放式大型语言模型 —— Gemma!Google 正在加强其对开源人工智能的支持,我们也非常有幸能够帮助全力支持这次发布,并与 Hugging Face 生态完美集成。

Gemma 提供两种规模的模型:7B 参数模型,针对消费级 GPU 和 TPU 设计,确保高效部署和开发;2B 参数模型则适用于 CPU 和移动设备。每种规模的模型都包含基础版本和经过指令调优的版本。

我们与 Google 紧密合作,确保 Gemma 能够无缝集成到 Hugging Face 的生态系统中。在 Hub 上,你可以找到这四个公开可访问的模型(包括两个基础模型和两个经过调优的模型)。此次发布的亮点包括:

  • Hub 上的模型,包括模型说明和授权信息

  • 🤗 Transformers 的集成

  • 与 Google Cloud 的深度集成

  • 与推理端点 (Inference Endpoints) 的集成

  • 使用 🤗 TRL 在单个 GPU 上对 Gemma 进行微调的示例

Gemma 是什么?

Gemma 是 Google 基于 Gemini 技术推出的四款新型大型语言模型(LLM),提供了 2B 和 7B 两种不同规模的版本,每种都包含了预训练基础版本和经过指令优化的版本。所有版本均可在各类消费级硬件上运行,无需数据量化处理,拥有高达 8K tokens 的处理能力:

  • gemma-7b:7B 参数的基础模型。

  • gemma-7b-it:7B 参数的指令优化版本。

  • gemma-2b:2B 参数的基础模型。

  • gemma-2b-it:2B 参数的指令优化版本。

1acd62a180320a025443c80279db0301.png

Gemma 模型的性能如何?以下是其基础版本与其他开放模型在 LLM 排行榜 上的比较(得分越高越好):

模型许可证商业使用预训练大小 [tokens]排行榜分数 ⬇️
LLama 2 70B Chat (参考)Llama 2 许可证2T67.87
Gemma-7BGemma 许可证6T63.75
DeciLM-7BApache 2.0未知61.55
PHI-2 (2.7B)MIT1.4T61.33
Mistral-7B-v0.1Apache 2.0未知60.97
Llama 2 7BLlama 2 许可证2T54.32
Gemma 2BGemma 许可证2T46.51

在 7B 参数级别,Gemma 表现出色,与市场上最佳模型如 Mistral 7B 不相上下。而 2B 版本的 Gemma 虽然规模较小,但在其类别中的表现也颇具竞争力,尽管在排行榜上的得分并未超越类似规模的顶尖模型,例如 Phi 2。我们期待社区对这些模型的真实使用反馈,以进一步优化和调整。

需要浅浅再强调一下:LLM 排行榜特别适用于衡量预训练模型的质量,而不太适用于聊天模型。我们鼓励对聊天模型运行其他基准测试,如 MT Bench、EQ Bench 和 lmsys Arena。

Prompt 提示词格式

Gemma 的基础模型不限定特定的提示格式。如同其他基础模型,它们能够根据输入序列生成一个合理的续接内容,适用于零样本或少样本的推理任务。这些模型也为针对特定应用场景的微调提供了坚实的基础。指令优化版本则采用了一种极其简洁的对话结构:

<start_of_turn>user
knock knock<end_of_turn>
<start_of_turn>model
who is there<end_of_turn>
<start_of_turn>user
LaMDA<end_of_turn>
<start_of_turn>model
LaMDA who?<end_of_turn>

要有效利用这一格式,必须严格按照上述结构进行对话。我们将演示如何利用 transformers 库中提供的聊天模板简化这一过程。

探索未知领域

尽管技术报告提供了关于基础模型训练和评估过程的信息,但关于数据集构成和预处理的具体细节则较为欠缺。据悉,这些模型是基于来自互联网文档、编程代码和数学文本等多种数据源训练而成,经过严格筛选,以排除含有敏感信息和不适内容的数据。

对于 Gemma 的指令优化模型,关于微调数据集以及与顺序微调技术(SFT)和 基于人类反馈的强化学习(RLHF)相关的超参数设置,细节同样未公开。

演示

现在,你可以在 Hugging Chat 上体验与 Gemma 指令模型的互动对话!点击此处访问:
https://hf.co/chat?model=google/gemma-7b-it

使用 🤗 Transformers

借助 Transformers 的 4.38 版本,你可以轻松地使用 Gemma 模型,并充分利用 Hugging Face 生态系统内的工具,包括:

  • 训练和推理脚本及示例

  • 安全文件格式(safetensors

  • 集成了诸如 bitsandbytes(4位量化)、PEFT(参数效率微调)和 Flash Attention 2 等工具

  • 辅助工具和帮助器,以便使用模型进行生成

  • 导出模型以便部署的机制

另外,Gemma 模型支持 torch.compile() 与 CUDA 图的结合使用,在推理时可实现约 4 倍的速度提升!

确保你使用的是最新版本的 transformers

pip install -U "transformers==4.38.0" --upgrade

以下代码片段展示了如何结合 transformers 使用 gemma-7b-it。运行此代码需大约 18 GB 的 RAM,适用于包括 3090 或 4090 在内的消费级 GPU。

from transformers import AutoTokenizer, pipeline
import torchmodel = "google/gemma-7b-it"tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = pipeline("text-generation",model=model,model_kwargs={"torch_dtype": torch.bfloat16},device="cuda",
)messages = [{"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt,max_new_tokens=256,add_special_tokens=True,do_sample=True,temperature=0.7,top_k=50,top_p=0.95
)
print(outputs[0]["generated_text"][len(prompt):])

Avast me, me hearty. I am a pirate of the high seas, ready to pillage and plunder. Prepare for a tale of adventure and booty!

简单介绍一下这段代码:

  • 代码段展示了如何利用 bfloat16 数据类型进行模型推理,该数据类型是所有评估中使用的参考精度。如果你的硬件支持,使用 float16 可能会更快。

  • 你还可以将模型自动量化,以 8 位或 4 位模式加载。以 4 位模式加载模型大约需要 9 GB 的内存,使其适用于多种消费级显卡,包括 Google Colab 上的所有 GPU。以下是以 4 位加载生成 pipeline 的方法:

pipeline = pipeline("text-generation",model=model,model_kwargs={"torch_dtype": torch.float16,"quantization_config": {"load_in_4bit": True}},
)

更多关于如何使用 transformers 和模型的详情,请参阅 模型卡片。

JAX 权重

所有 Gemma 模型变种都可以用 PyTorch 或 JAX / Flax 使用。若要加载 Flax 权重,你需要按照以下方式使用仓库中的 flax 修订版本:

import jax.numpy as jnp
from transformers import AutoTokenizer, FlaxGemmaForCausalLMmodel_id = "google/gemma-2b"tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.padding_side = "left"model, params = FlaxGemmaForCausalLM.from_pretrained(model_id,dtype=jnp.bfloat16,revision="flax",_do_init=False,
)inputs = tokenizer("Valencia and Málaga are", return_tensors="np", padding=True)
output = model.generate(inputs, params=params, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output.sequences, skip_special_tokens=True)

['Valencia and Málaga are two of the most popular tourist destinations in Spain. Both cities boast a rich history, vibrant culture,']

如果你在 TPU 或多个 GPU 设备上运行,可以利用 jitpmap 来编译和并行执行推理任务。

与 Google Cloud 集成

你可以通过 Vertex AI 或 Google Kubernetes Engine (GKE) 在 Google Cloud 上部署和训练 Gemma,利用 文本生成推理 和 Transformers 实现。

要从 Hugging Face 部署 Gemma 模型,请访问模型页面并点击部署 -> Google Cloud。这将引导你进入 Google Cloud Console,在那里你可以通过 Vertex AI 或 GKE 一键部署 Gemma。文本生成推理为 Gemma 在 Google Cloud 上的部署提供支持,这是我们与 Google Cloud 合作伙伴关系的初步成果。

1418e2d84b95c8c321d53d12ab00009e.png

你也可以通过 Vertex AI Model Garden 直接访问 Gemma。

要在 Hugging Face 上微调 Gemma 模型,请访问 模型页面 并点击 训练 -> Google Cloud。这将引导你进入 Google Cloud Console,在那里你可以在 Vertex AI 或 GKE 上访问笔记本,以在这些平台上微调 Gemma。

90c3d9c6bebef4a3162f5339c8778506.png

这些集成是我们 与 Google 合作伙伴关系成果的一部分,未来还会有更多精彩内容发布,敬请期待!

与推理端点集成

你可以在 Hugging Face 的 推理端点 上部署 Gemma,该端点使用文本生成推理作为后端。文本生成推理 是由 Hugging Face 开发的可用于生产环境的推理容器,旨在简化大型语言模型的部署。它支持连续批处理、令牌流式传输、多 GPU 张量并行加速推理,并提供生产就绪的日志记录和跟踪功能。

要部署 Gemma 模型,请访问 HF Hub 模型页面 并点击 部署 -> 推理端点。有关 使用 Hugging Face 推理端点部署 LLM的更多信息,请参阅我们之前的博客文章。推理端点通过文本生成推理支持 消息 API,使你可以通过简单地更换 URL 从其他封闭模型切换到开放模型。

from openai import OpenAI# initialize the client but point it to TGI
client = OpenAI(base_url="<ENDPOINT_URL>" + "/v1/",  # replace with your endpoint urlapi_key="<HF_API_TOKEN>",  # replace with your token
)
chat_completion = client.chat.completions.create(model="tgi",messages=[{"role": "user", "content": "Why is open-source software important?"},],stream=True,max_tokens=500
)# iterate and print stream
for message in chat_completion:print(message.choices[0].delta.content, end="")

使用 🤗 TRL 进行微调

在消费级 GPU 上训练大型语言模型既是技术上的挑战,也是计算上的挑战。本节将介绍 Hugging Face 生态系统中可用的工具,这些工具可以帮助你高效地在消费级 GPU 上训练 Gemma。

一个微调 Gemma 的示例命令如下。我们利用 4 位量化和 QLoRA(一种参数效率微调技术)来减少内存使用,目标是所有注意力块的线性层。值得注意的是,与密集型 Transformer 不同,MLP 层(多层感知器层)因其稀疏性不适合与 PEFT(参数效率微调)技术结合使用。

首先,安装 🤗 TRL 的最新版本并克隆仓库以获取 训练脚本:

pip install -U transformers
pip install git+https://github.com/huggingface/trl
git clone https://github.com/huggingface/trl
cd trl

然后运行脚本:

accelerate launch --config_file examples/accelerate_configs/multi_gpu.yaml --num_processes=1 \examples/scripts/sft.py \--model_name google/gemma-7b \--dataset_name OpenAssistant/oasst_top1_2023-08-25 \--batch_size 2 \--gradient_accumulation_steps 1 \--learning_rate 2e-4 \--save_steps 20_000 \--use_peft \--peft_lora_r 16 --peft_lora_alpha 32 \--target_modules q_proj k_proj v_proj o_proj \--load_in_4bit

在单个 A10G GPU 上,这个训练过程大约需要 9 小时。通过调整 --num_processes 参数为你可用的 GPU 数量,可以实现并行化训练,从而缩短训练时间。

额外资源

  • Hub 上的模型

  • 开放 LLM 排行榜

  • Hugging Chat 上的聊天演示

  • Gemma 官方博客

  • Gemma 产品页面

  • Vertex AI 模型花园链接

  • Google Notebook 教程

致谢

此次发布和在生态系统中的集成是由包括 Clémentine、Eleuther 评估工具(LLM 评估)、Olivier、David(文本生成推理支持)、Simon(在 Hugging Face 上开发新的访问控制特性)、Arthur、Younes、Sanchit(将 Gemma 集成到 transformers 中)、Morgan(将 Gemma 集成到 optimum-nvidia,即将推出)、Nathan、Victor、Mishig(使 Gemma 在 Hugging Chat 上可用)等众多社区成员的共同努力而成。

我们特别感谢 Google 团队发布 Gemma 并使其在开源 AI 社区中可用,为推动开放式人工智能发展做出了重要贡献。

查看本文链接,请点击阅读原文在 Hugging Face 博客上查看:
https://hf.co/blog/zh/gemma

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/262690.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BUUCTF crypto做题记录(8)新手向

一、密码学心声 得到信息如下图 背景故事没什么信息&#xff0c;主要看曲谱。大概率不会让我们涉及与音乐有关的内容&#xff0c;题目中也提示说答案是一串字符串&#xff0c;所以我们可以猜测是将曲谱上的数字转化成字符。曲谱中文字提示是用ASCII码进行转换。没有数字8可能是…

PostMan使用自带js库base64编码、sha256摘要、环境变量的使用

目录 1、环境变量的使用2、base64编码、sha256摘要、以及脚本的使用3、脚本代码 在请求调试接口的过程中&#xff0c;因为要使用大量相同的参数&#xff0c;使用变量的方式能很大程度上减轻接口调用的工作量 版本说明&#xff1a;Postman for Windows&#xff0c;Version&#…

【初中生讲机器学习】11. 回归算法中常用的模型评价指标有哪些?here!

创建时间&#xff1a;2024-02-19 最后编辑时间&#xff1a;2024-02-23 作者&#xff1a;Geeker_LStar 你好呀~这里是 Geeker_LStar 的人工智能学习专栏&#xff0c;很高兴遇见你~ 我是 Geeker_LStar&#xff0c;一名初三学生&#xff0c;热爱计算机和数学&#xff0c;我们一起加…

【C++私房菜】面向对象中的多重继承以及菱形继承

文章目录 一、多重继承1、多重继承概念2、派生类构造函数和析构函数 二、菱形继承和虚继承2、虚继承后的构造函数和析构函数 三、has-a 与 is-a 一、多重继承 1、多重继承概念 **多重继承&#xff08;multiple inheritance&#xff09;**是指从多个直接基类中产生派生类的能力…

flink内存管理,设置思路,oom问题,一文全

flink内存管理 1 内存分配1.1 JVM 进程总内存&#xff08;Total Process Memory&#xff09;1.2 Flink 总内存&#xff08;Total Flink Memory&#xff09;1.3 JVM 堆外内存&#xff08;JVM Off-Heap Memory&#xff09;1.4 JVM 堆内存&#xff08;JVM Heap Memory&#xff09;…

高并发系统实战课个人总结(极客时间)

高并发系统实战课 场景 读多写少 我会以占比最高的“读多写少”系统带你入门&#xff0c;梳理和改造用户中心项目。这类系统的优化工作会聚焦于如何通过缓存分担数据库查询压力&#xff0c;所以我们的学习重点就是做好缓存&#xff0c;包括但不限于数据梳理、做数据缓存、加缓…

axios是如何实现的(源码解析)

1 axios的实例与请求流程 在阅读源码之前&#xff0c;先大概了解一下axios实例的属性和请求整体流程&#xff0c;带着这些概念&#xff0c;阅读源码可以轻松不少&#xff01; 下图是axios实例属性的简图。 可以看到axios的实例上&#xff0c;其实主要就这三个东西&#xff1a…

CLion 2023:专注于C和C++编程的智能IDE mac/win版

JetBrains CLion 2023是一款专为C和C开发者设计的集成开发环境&#xff08;IDE&#xff09;&#xff0c;它集成了许多先进的功能&#xff0c;旨在提高开发效率和生产力。 CLion 2023软件获取 CLion 2023的智能代码编辑器提供了丰富的代码补全和提示功能&#xff0c;使您能够更…

基于Java+小程序点餐系统设计与实现(源码+部署文档)

博主介绍&#xff1a; ✌至今服务客户已经1000、专注于Java技术领域、项目定制、技术答疑、开发工具、毕业项目实战 ✌ &#x1f345; 文末获取源码联系 &#x1f345; &#x1f447;&#x1f3fb; 精彩专栏 推荐订阅 &#x1f447;&#x1f3fb; 不然下次找不到 Java项目精品实…

FairyGUI × Cocos Creator 3.x 场景切换

前言 前文提要&#xff1a; FariyGUI Cocos Creator 入门 FairyGUI Cocos Creator 3.x 使用方式 个人demo&#xff1a;https://gitcode.net/qq_36286039/fgui_cocos_demo_dust 个人demo可能会更新其他代码&#xff0c;还请读者阅读本文内容&#xff0c;自行理解并实现。 官…

MySql-DQL-聚合函数

目录 聚合函数统计该企业员工数量count&#xff08;字段&#xff09;count&#xff08;常量&#xff09;count&#xff08;*&#xff09; 统计该企业最早入职的员工统计该企业最迟入职的员工统计该企业员工 ID 的平均值统计该企业员工的 ID 之和 聚合函数 之前我们做的查询都是…

uniapp_微信小程序自定义顶部导航栏和右侧胶囊对齐(不对齐来打我)

一、想要的效果 思路首先开启自定义导航栏&#xff0c;取消自带的导航栏&#xff0c;然后计算胶囊的高度和标题对齐 二、成品代码 1、首先再你需要居中的代码添加以下style <view class"header":style"{paddingTop:navBarTop px,height:navBarHeight px,…

Vue的个人笔记

Vue学习小tips ctrl s ----> 运行 alt b <scrip> 链接 <script src"https://cdn.jsdelivr.net/npm/vue2.7.16/dist/vue.js"></script> 插值表达式 指令

力扣hot100题解(python版7-9题)

7、接雨水 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 示例 1&#xff1a; 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2,1] 输出&#xff1a;6 解释&#xff1a;上面是由数组 [0,1,0,2,1,0,1,…

第2讲:C语言数据类型和变量

第2讲&#xff1a;C语言数据类型和变量 目录1.数据类型介绍1.1字符型1.2整型1.3浮点型1.4 布尔类型1.5 各种数据类型的长度1.5.1 sizeof 操作符1.5.2 数据类型长度1.5.3 sizeof 中表达式不计算 2.signed 和 unsigned3.数据类型的取值范围4. 变量4.1 变量的创建4.2 变量的分类 5…

vue2+element医院安全(不良)事件报告管理系统源代码

目录 安全不良事件类型 源码技术栈 医院安全&#xff08;不良&#xff09;事件报告管理系统采用无责的、自愿的填报不良事件方式&#xff0c;有效地减轻医护人员的思想压力&#xff0c;实现以事件为主要对象&#xff0c;可以自动、及时、实际地反应医院的安全、不良、近失事件…

使用Jemeter对HTTP接口压测

我们不应该仅仅局限于某一种工具&#xff0c;性能测试能使用的工具非常多&#xff0c;选择适合的就是最好的。笔者已经使用Loadrunner进行多年的项目性能测试实战经验&#xff0c;也算略有小成&#xff0c;任何性能测试&#xff08;如压力测试、负载测试、疲劳强度测试等&#…

Open CASCADE学习|绘制砂轮

今天绘制一个砂轮&#xff0c;其轮廓由两条直线段和两段圆弧构成&#xff0c;圆弧分别与直线相切&#xff0c;两条圆弧之间相交而非相切。建模思路是&#xff1a;先给定两条直线段的起始点及长度&#xff0c;画出直线段&#xff0c;然后给定其中一圆弧的半径及圆心角&#xff0…

Linux CentOS stream 9 firewalld

随着互联网行业快速发展&#xff0c;服务器成为用户部署网络业务重要的网络工具&#xff0c;但随之而来的就是更密集的网络攻击&#xff0c;这给网站带来了很大的阻碍。防火墙作为保障网络安全的主要设备&#xff0c;可以很好的抵御网络攻击。 防火墙基本上使用硬件和软件两种…

Unity中URP实现水效果(水的深度)

文章目录 前言一、搭建预备场景1、新建一个面片&#xff0c;使其倾斜一个角度&#xff0c;来模拟水底和岸边的效果2、随便创建几个物体&#xff0c;作为与水面接触的物体3、再新建一个面片&#xff0c;作为水面 二、开始编写水体的Shader效果1、新建一个URP基础Shader2、把水体…