【数据挖掘实战】——中医证型的关联规则挖掘(Apriori算法)

🤵‍♂️ 个人主页:@Lingxw_w的个人主页

✍🏻作者简介:计算机科学与技术研究生在读
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 

目录

一、背景和挖掘目标

1、问题背景

2、传统方法的缺陷

3、原始数据情况

4、挖掘目标

二、分析方法和过程

1、初步分析

2、总体过程

第1步:数据获取

第2步:数据预处理

第3步:构建模型

三、思考和总结


项目地址:Datamining_project: 数据挖掘实战项目代码

一、背景和挖掘目标

1、问题背景

  • 中医药治疗乳腺癌有着广泛的适应证和独特的优势。从整体出发,调整机体气血、阴阳、脏腑功能的平衡,根据不同的临床证候进行辨证论治。确定“先证而治”的方向:即后续证侯尚未出现之前,需要截断恶化病情的哪些后续证侯。
  • 找出中医症状间的关联关系和诸多症状间的规律性,并且依据规则分析病因、预测病情发展以及为未来临床诊治提供有效借鉴。能够帮助乳腺癌患者手术后体质的恢复、生存质量的改善,有利于提高患者的生存机率。

2、传统方法的缺陷

  • 中医辨证极为灵活,虽能够处理患者的复杂多变的临床症状,体现出治疗优势。但缺乏统一的规范,难以做到诊断的标准化。
  • 疾病的复杂性和体质的差异性,造成病人大多是多种证素兼夹复合。临床医师可能会被自身的经验所误导,单纯对症治疗,违背了中医辨证论治的原则。
  • 同一种疾病的辨证分型,往往都有不同见解,面对临床症状不典型的患者,初学者很难判断。

3、原始数据情况

患者信息属性说明:针对患者的信息,对每个属性进行相应说明。

患者信息数据:包含患者的基本信息以及病理症状等。

4、挖掘目标

  • 借助三阴乳腺癌患者的病理信息,挖掘患者的症状中医证型之间的关联关系;
  • 对截断治疗提供依据,挖掘潜性证素。

二、分析方法和过程

1、初步分析

  • 针对乳腺癌患者,可运用中医截断疗法进行治疗,在辨病的基础上围绕各个病程的特殊证候先证而治型;
  • 依据医学指南,将乳腺癌辨证统一化,为六种证型。且患者在围手术期、围化疗期、围放疗期和内分泌治疗期等各个病程阶段,基本都会出现特定的临床症状。
  • 通过关联规则算法,挖掘各中医证素与乳腺癌TNM分期之间的关系。探索不同分期阶段的三阴乳腺癌患者的中医证素分布规律,以及截断病变发展、先期干预的治疗思路,指导三阴乳腺癌的中医临床治疗。

2、总体过程

 第1步:数据获取 

采用调查问卷的形式对数据进行搜集。
  • 拟定调查问卷表并形成原始指标表;
  • 定义纳入标准与排除标准;
  • 将收集回来的问卷表整理成原始数据。
问卷调查需要满足两个条件:
  • 问卷信息采集者均要求有中医诊断学基础,能准确识别病人的舌苔脉象,用通俗的语言解释医学术语,并确保患者信息填写准确;
  • 问卷调查对象必须是三阴乳腺癌患者,他们是某省中医院以及肿瘤医院等各大医院各病程阶段1253位三阴乳腺癌患者。

拟定调查问卷表并形成原始指标表:

 定义纳入标准与排除标准:

标准

详细信息

纳入标准

病理诊断为乳腺癌。
病历完整,能提供既往接受检查、治疗等相关信息,
包括发病年龄、月 经状态、原发肿瘤大小、区域淋巴结状态、
组织学类型、组织学分级、 P53 表达、 VEGF 表达等,
作为临床病理及肿瘤生物学的特征指标。
没有精神类疾病,能自主回答问卷调查者。

排除标准

本研究中临床、病理、肿瘤生物学指标不齐全者。
存在第二肿瘤(非乳腺癌转移)。
精神病患者或不能自主回答问卷调查者。
不愿意参加本次调查者或中途退出本次调查者。
填写的资料无法根据诊疗标准进行分析者。

 第2步:数据预处理 

1. 数据清洗:收回的问卷中,存在无效的问卷,为了便于模型分析,需要对其进行清洗处理。

 2.属性规约:删除不相关属性,选取其中六种证型得分、患者编号和TNM分期属性

患者

编号

肝气郁结证得分

热毒蕴结证得分

冲任失调证得分

气血两虚证得分

脾胃虚弱证得分

肝肾阴虚证得分

TNM分期

20140001

7

30

7

23

18

17

H4

20140179

12

34

12

16

19

5

H4

……

……

……

……

……

……

……

……

20140930

4

4

12

12

7

15

H4

3. 数据变换
属性构造:为了更好的反应出中医证素分布的特征,采用证型系数代替具体单证型的证素得分,证型相关系数计算公式如下:证型系数 = 该证型得分/该证型总分。

数据离散化:Apriori关联规则算法无法处理连续性数值变量,对数据进行离散化。本例采用聚类算法对各个证型系数进行离散化处理,将每个属性聚成四类

聚类离散化,最后的result的格式为:

      1           2           3           4
A     0    0.178698    0.257724    0.351843
An  240  356.000000  281.000000   53.000000
即(0, 0.178698]有240个,(0.178698, 0.257724]有356个,依此类推。
from __future__ import print_function
import pandas as pd
from sklearn.cluster import KMeans  # 导入K均值聚类算法datafile = '../data/data.xls'  # 待聚类的数据文件
processedfile = '../tmp/data_processed.xls'  # 数据处理后文件
typelabel = {u'肝气郁结证型系数': 'A', u'热毒蕴结证型系数': 'B', u'冲任失调证型系数': 'C', u'气血两虚证型系数': 'D',u'脾胃虚弱证型系数': 'E', u'肝肾阴虚证型系数': 'F'}
k = 4  # 需要进行的聚类类别数# 读取数据并进行聚类分析
data = pd.read_excel(datafile)  # 读取数据
keys = list(typelabel.keys())
result = pd.DataFrame()if __name__ == '__main__':  # 判断是否主窗口运行,如果是将代码保存为.py后运行,则需要这句,如果直接复制到命令窗口运行,则不需要这句。for i in range(len(keys)):# 调用k-means算法,进行聚类离散化print(u'正在进行“%s”的聚类...' % keys[i])kmodel = KMeans(n_clusters=k, n_jobs=4)  # n_jobs是并行数,一般等于CPU数较好kmodel.fit(data[[keys[i]]].as_matrix())  # 训练模型r1 = pd.DataFrame(kmodel.cluster_centers_, columns=[typelabel[keys[i]]])  # 聚类中心r2 = pd.Series(kmodel.labels_).value_counts()  # 分类统计r2 = pd.DataFrame(r2, columns=[typelabel[keys[i]] + 'n'])  # 转为DataFrame,记录各个类别的数目r = pd.concat([r1, r2], axis=1).sort(typelabel[keys[i]])  # 匹配聚类中心和类别数目r.index = [1, 2, 3, 4]r[typelabel[keys[i]]] = pd.rolling_mean(r[typelabel[keys[i]]], 2)  # rolling_mean()用来计算相邻2列的均值,以此作为边界点。r[typelabel[keys[i]]][1] = 0.0  # 这两句代码将原来的聚类中心改为边界点。result = result.append(r.T)result = result.sort()  # 以Index排序,即以A,B,C,D,E,F顺序排result.to_excel(processedfile)

第3步:构建模型

1、中医证型关联模型:

采用关联规则算法,输入建模参数,探索乳腺癌患者 TNM 分期与中医证型系数之间的关系,挖掘他们之间的关联关系 。注:结合实际业务分析且需要多次设置,确定最小支持度与最小置信度。本例的输入参数为:最小支持度6% 、最小置信度 75%。

import pandas as pd
from sklearn.cluster import KMeansdatafile = 'data.xls'  # 待聚类的数据文件
processedfile = 'data_processed.xlsx'  # 处理后的文件
typelabel = {'肝气郁结证型系数':'A', '热毒蕴结证型系数':'B', '冲任失调证型系数':'C', '气血两虚证型系数':'D', '脾胃虚弱证型系数':'E','肝肾阴虚证型系数':'F'}
k = 4  # 需要的聚类类别数# 读取数据并且进行聚类
data = pd.read_excel(datafile)
keys = list(typelabel.keys())
result = pd.DataFrame()if __name__ == '__main__':  # 判断是否主窗口运行'''当.py文件被直接运行时,if __name__ == '__main__'之下的代码块将被运行;当.py文件以模块形式被导入时,if __name__ == '__main__'之下的代码块不被运行。'''for i in range(len(keys)): # 调用k-means算法,进行聚类离散化print('正在进行 "%s" 的聚类...' % keys[i])kmodel = KMeans(n_clusters=k)kmodel.fit(data[[keys[i]]].values)  # 训练模型r1 = pd.DataFrame(kmodel.cluster_centers_, columns=[typelabel[keys[i]]])  # 聚类中心r2 = pd.Series(kmodel.labels_).value_counts()  # 分类统计r2 = pd.DataFrame(r2, columns=[typelabel[keys[i]]+'n'])  # 转为DataFrame,记录各个类别的数目r = pd.concat([r1, r2], axis=1).sort_values(by= typelabel[keys[i]])  # 匹配聚类中心和类别数目,并按值排序r.index = [1, 2, 3, 4]r[typelabel[keys[i]]] = r[typelabel[keys[i]]].rolling(2).mean()  # rolling().mean()用来计算相邻2列的均值,以此作为边界点r[typelabel[keys[i]]][1] = 0.0  # 将原来的聚类中心改为边界点result = result.append(r.T)result = result.sort_index()  # 以index排序,即以ABCDEF排序result.to_excel(processedfile)

 聚类之后的结果:

Apriori关联规则算法 

#-*- coding: utf-8 -*-
from __future__ import print_function
import pandas as pd#自定义连接函数,用于实现L_{k-1}到C_k的连接
def connect_string(x, ms):x = list(map(lambda i:sorted(i.split(ms)), x))l = len(x[0])r = []for i in range(len(x)):for j in range(i,len(x)):if x[i][:l-1] == x[j][:l-1] and x[i][l-1] != x[j][l-1]:r.append(x[i][:l-1]+sorted([x[j][l-1],x[i][l-1]]))return r#寻找关联规则的函数
def find_rule(d, support, confidence, ms = u'--'):result = pd.DataFrame(index=['support', 'confidence']) #定义输出结果support_series = 1.0*d.sum()/len(d) #支持度序列column = list(support_series[support_series > support].index) #初步根据支持度筛选k = 0while len(column) > 1:k = k+1print(u'\n正在进行第%s次搜索...' %k)column = connect_string(column, ms)print(u'数目:%s...' %len(column))sf = lambda i: d[i].prod(axis=1, numeric_only = True) #新一批支持度的计算函数#创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。d_2 = pd.DataFrame(list(map(sf,column)), index = [ms.join(i) for i in column]).Tsupport_series_2 = 1.0*d_2[[ms.join(i) for i in column]].sum()/len(d) #计算连接后的支持度column = list(support_series_2[support_series_2 > support].index) #新一轮支持度筛选support_series = support_series.append(support_series_2)column2 = []for i in column: #遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B?i = i.split(ms)for j in range(len(i)):column2.append(i[:j]+i[j+1:]+i[j:j+1])cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) #定义置信度序列for i in column2: #计算置信度序列cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))]/support_series[ms.join(i[:len(i)-1])]for i in cofidence_series[cofidence_series > confidence].index: #置信度筛选result[i] = 0.0result[i]['confidence'] = cofidence_series[i]result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))]result = result.T.sort_values(['confidence','support'], ascending = False) #结果整理,输出print(u'\n结果为:')print(result)return result

 首先设置建模参数最小支持度、最小置信度,输入建模样本数据。然后采用Apriori关联规则算法对建模的样本数据进行分析,以模型参数设置的最小支持度、最小置信度以及分析目标作为条件,如果所有的规则都不满足条件,则需要重新调整模型参数,否则输出关联规则结果。

import pandas as pd
# from apriori import *  # 导入自行编写的高效的Apriori函数
import time  # 导入时间库用来计算用时inputfile = 'apriori.txt'  # 输入事务集文件
data = pd.read_csv(inputfile, header=None, dtype=object)start = time.perf_counter()  # 计时开始(新版本不支持clock,用time.perf_counter()替换)
print('\n转换原始数据至0-1矩阵')
ct = lambda x : pd.Series(1, index=x[pd.notnull(x)])  # 转换0-1矩阵的过渡函数,即将标签数据转换为1
b = map(ct, data.values)  # 用map方式执行# Dataframe参数不能是迭代器
c = list(b)
data = pd.DataFrame(c).fillna(0)  # 实现矩阵转换,除了1外,其余为空,空值用0填充
end = time.perf_counter()  # 计时结束
print('\n转换完毕,用时:%0.2f秒' % (end-start))
del b  # 删除中间变量b,节省内存support = 0.06  # 最小支持度
confidence = 0.75  # 最小置信度
ms = '---'  # 连接符,默认'--',用来区分不同元素,如A--B,需要保证原始表格不含有该字符start = time.perf_counter()  # 计时开始
print('\n开始搜索关联规则')
find_rule(data, support, confidence, ms)
end = time.perf_counter()  # 计时结束
print('\n转换完毕,用时:%0.2f秒' % (end-start))

2、模型分析

TNM分期为H4期的三阴乳腺癌患者证型主要为肝肾阴虚证、热毒蕴结证、肝气郁结证和冲任失调,H4期患者肝肾阴虚证和肝气郁结证的临床表现较为突出,其置信度最大达到87.96%

 3、模型应用

根据关联结果,结合实际情况,为患者未来的症治提供有效的帮助。

a)IV期患者出现肝肾阴虚证之表现时,应当以滋养肝肾为补,清热解毒为攻,攻补兼施,截断热毒蕴结证的出现

b)患者多有肝气郁结证的表现,治疗时须重视心理调适,对其进行身心一体的综合治疗。

三、思考和总结

1、Python的流行库中都没有自带的关联规则函数,相应的关联规则函数,函数依赖于Pandas库。该函数是很高效的(就实现Apriori算法而言),可作为工具函数在需要时使用。

  • 2、Apriori算法的关键两步为找频繁集与根据置信度筛选规则,明白这两步过程后,才能清晰的编写相应程序。
  • 3、本案例采用聚类的方法进行数据离散化,其他的离散化方法如:等距、等频、决策树、基于卡方检验等,试比较各个方法的优缺点。

其他数据挖掘实战案例: [订阅链接]

【数据挖掘实战】——航空公司客户价值分析(K-Means聚类案例)

【数据挖掘实战】——中医证型的关联规则挖掘(Apriori算法)

【数据挖掘实战】——家用电器用户行为分析及事件识别(BP神经网络)

【数据挖掘实战】——应用系统负载分析与容量预测(ARIMA模型)

【数据挖掘实战】——电力窃漏电用户自动识别(LM神经网络和决策树)

【数据挖掘实战】——基于水色图像的水质评价(LM神经网络和决策树)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/26313.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据挖掘--(实验二)关联规则实验

实验一 有趣的频繁项集 案例简介: 有时我们并不想寻找所有频繁项集,而只对包含某个特定元素项 的项集感兴趣。我们会寻找毒蘑菇中的一些公共特征,利用这些特征 就能避免吃到那些有毒的蘑菇。UCI 的机器学习数据集合中有一个关于肋形蘑菇的 23 种特征的数据集,每一…

数据挖掘--糖尿病遗传风险检测

文章目录 赛事背景数据特征介绍数据处理导入数据并查看分析数据数据清洗特征工程 构建模型建立训练数据集和测试数据集构建模型 赛事背景 截至2022年,中国糖尿病患者近1.3亿。中国糖尿病患病原因受生活方式、老龄化、城市化、家族遗传等多种因素影响。同时&#xff…

【数据分析】业务分析之ABtest

A/B测试 AB测试是为Web或App界面或流程制作两个(A/B)或多个(A/B/n)版本,在同一时间维度,分别让组成成分相同(相似)的访客群组(目标人群)随机的访问这些版本&a…

生物信息学竞赛:糖尿病数据挖掘

糖尿病数据挖掘 一理:机器学习量化分析糖尿病致病因子下载:临床数据线性回归预测糖尿病LightGBM 预测糖尿病糖尿病因子分析变量相关性分析 一文:当前科学理解慢病之王的解决方案是什么怎么治疗怎么预防 一理:机器学习量化分析糖尿…

VS Code插件之Debugger for Chrome

号称2018最火的编辑器,不用用怎么行? 不多说直接开始踩坑之路。 要在vs中启动chrome控制台怎么办?vscode并没有集成环境,这里我们需要借助一个插件Debugger for Chrome。 选择左边安装包选项,点击商店搜索Debugger for…

Vscode对C/C++可视化的代码跟踪调试

文章目录 可视化的代码跟踪调试1、安装Visual Studio Code2、用vscode编译调试C\C 总结 可视化的代码跟踪调试 ubantu18.04的环境下,在命令行工具gdb调试基础上,利用可视化调试前端软件Visual Studio Code,(后端依然依赖gcc、gdb…

VS Code真机测试步骤

VS Code真机测试步骤 前提:你的电脑跟你的手机是在同一个网络环境下。电脑连手机热点; 1. 在扩展里搜索live server,下载安装; 2. 打开cmd 命令窗口(快捷键是winr); 输入…

VS Code调试C代码

1、前言 首先说明的是vscode是代码编辑器,并不是编译器,它本身并不能编译C语言。 在这里我们使用的是MinGW-w64作为C语言的编译器。MinGW-w64的前身是MinGW的全称是:Minimalist GNU on Windows。它实际上是将经典的开源 C语言 编译器 GCC 移…

VScode的代码截图插件CodeSnap

CodeSnap : 在 VS Code 中为您的代码截取漂亮的屏幕截图! 插件名:CodeSnap官方地址:CodeSnap - Visual Studio Marketplace特征: 快速保存代码的屏幕截图将屏幕截图复制到剪贴板显示行号许多其他配置选项用法:选中需要…

Vscode——调试数据可视化插件debug-visualizer

debug-visualizer是一款极其优秀的调试数据可视化插件 安装方法 第一步:vscode插件库安装 debug-visualizer第二步:环境内输入 pip install vscodedebugvisualizer 使用方法 启动调试Ctrl Shift P 打开命令面板,输入 Debug Visualizer: …

VS Code 最好的 Git 可视化插件

👇👇关注后回复 “进群” ,拉你进程序员交流群👇👇 作者丨小集 来源丨小集(ID:zsxjtip) Visual Studio Code 有几组 git 命令来为您的代码存储库执行和执行多项任务。但是&#xff0…

如何使用VScode软件测试接口

我们知道,Visual Studio Code(简称VScode)软件一般用于编写前端代码,但其实,它也可以很方便的用于接口测试,达到和postMan一样的效果。 怎么实现呢? 步骤如下: 1.安装 REST Clien…

视频特效软件有哪些?这些软件值得一试

大家平常在制作视频时,经常需要将多个视频拼接,但是如果两个视频中间没有什么转场过渡的话,会显得很单调。我们可以增加一些转场、音乐、特效,这样整支视频看起来效果会好很多。讲到视频特效,可能有些小伙伴会觉得它很…

python :超级大乐透

体育彩票 超级大乐透 dlt.py # codingutf-8 import randomdef xuanhao(total, count):element [x1 for x in range(total)]result []for i in range(count):res element[random.randint(0, len(element)-1)]element.remove(res)result.append(res)return result# 超级大乐透…

发卡网源码

简介:发卡网带代理功能,安装简单。 网盘地址:https://pan.baidu.com/s/1E3AtqCmBZPjXgaiUEXrM6Q 提取码:rsu4 展示:

最新鲸发卡企业发卡网系统源码+免授权

正文: 心心念念的鲸发卡来啦,企业发卡源码,鲸发卡。目前全网最稳定的发卡系统之一。 在运营版本,既然做就要把他当作一项事业来做。 程序开源无加密,完整运营级程序,非市面上垃圾程序BUG一堆。 此程序经过市场验证…

功能强大的发卡网源码+支付接口超多

正文: 有二十三个支付接口,三套前台模板。 由于还得更新其他源码,就填充了一个商品,UI看起来不错,脑补了下, 填充完商品后,应该会更好看。 程序: wwbwf.lanzouf.com/iigbh09ygu6b 图片:

【.NET AI Books 前言】Azure OpenAI Service 入门

本书是为 .NET 开发者而写的,让 .NET 开发者能快速掌握 Azure OpenAI Service 的使用技巧。 ChatGPT 的到来意味着我们已经置身于 AI 引起的全新变革中,作为开发者你可能将面临几种改变: GPT 模型到来后,如何去架构好企业解决方案…

github基本操作

目标 把本地的一个项目放到github上,方便浏览和管理 步骤 要将本地代码推送到 GitHub 上,您需要执行以下步骤: 1. 在 GitHub 上创建一个新的仓库。 2. 在本地计算机上使用 Git 命令行工具初始化一个新的 Git 仓库。 3. 将本地代码添加到 …

如何构造个人 AI 策略:从 AI 绘画的演进与 ChatGPT 现状出发?

持续关注 AI 相关探索:https://github.com/phodal/ai-research PS:就本文的结论而言,我相信你已经或多或少的有所体会了。也因此,本文更多的是展现一个思考的过程,而不是一个纯粹的结论。 AIGC 是什么?它是…