通俗易懂理解CA(Coordinate Attention)

一、参考资料

github代码:CoordAttention

Coordinate Attention

二、相关介绍

通道注意力与空间注意力

关于通道注意力和空间注意力的详细介绍,请参考另一篇博客:通俗易懂理解通道注意力机制(CAM)与空间注意力机制(SAM)

注意力机制是用来告诉模型需要关注哪些内容和哪些位置。对于网络的某一点输出,尺寸一般是(batchsize,C,H,W),channel attention 是利用通道信息( C ),spatial attention 是利用位置信息(H, W)。

三、CA(Coordinate Attention)相关介绍

1. 不同注意力方法对比

1.1 不同注意力的结构

  • SE模块[1]从feature map中channel着手,学习模型应该关注哪些通道,如图(a);
  • CBAM(Convolutional Block Attention Module)[2]作为SE的改进版本,结合了channel和spatial,如图(b);
  • 实际上,CBAM提取空间注意力是用局部卷积,只能捕获局部的信息,无法获得长距离依赖。且CBAM全局池化会有位置损失,实际上pool这种都会有信息损失,基于此作者提出了CA[3],充分利用了位置信息,而且控制了计算开销,如图©;

在这里插入图片描述

解释说明

  • GAP,表示全局平均池化(global average pooling);
  • GMP,表示全局最大池化(global max pooling);
  • X Avg Pool,表示一维水平全局池化(1D horizontal global average pooling);
  • Y Avg Pool,表示一维垂直全局平均池化(1D vertical global average pooling)。

1.2 不同注意力的性能

不同注意力方法在三种经典视觉任务中的表现,如下图所示:

在这里插入图片描述

解释说明

  • MBV2,表示MobileNetV2

2. (Paddle)代码实现

# CA (coordinate attention)import paddle
import paddle.nn as nn
import math
import paddle.nn.functional as Fclass CA(nn.Layer):def __init__(self, in_ch, reduction=32):super(CA, self).__init__()self.pool_h = nn.AdaptiveAvgPool2D((None, 1))self.pool_w = nn.AdaptiveAvgPool2D((1, None))mip = max(8, in_ch // reduction)self.conv1 = nn.Conv2D(in_ch, mip, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2D(mip)self.act = nn.Hardswish()self.conv_h = nn.Conv2D(mip, in_ch, kernel_size=1, stride=1, padding=0)self.conv_w = nn.Conv2D(mip, in_ch, kernel_size=1, stride=1, padding=0)def forward(self, x):identity = xn,c,h,w = x.shapex_h = self.pool_h(x)x_w = self.pool_w(x).transpose([0, 1, 3, 2])y = paddle.concat([x_h, x_w], axis=2)y = self.conv1(y)y = self.bn1(y)y = self.act(y) x_h, x_w = paddle.split(y, [h, w], axis=2)x_w = x_w.transpose([0, 1, 3, 2])x_h = F.sigmoid(self.conv_h(x_h))x_w = F.sigmoid(self.conv_w(x_w))      out = identity * x_w * x_hreturn out

验证

# validation
# input size = 64,512,14,14 --> CA --> output size = 64,512,14,14ca = CA(512)                     # in_channel
x = paddle.randn([64,512,14,14]) # (batchsize, channel, H, W)
y = ca(x)
y.shape

四、参考文献

[1] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.

[2] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.

[3] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 13713-13722.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/263165.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分类预测 | Matlab实现KPCA-ISSA-LSSVM基于核主成分分析和改进的麻雀搜索算法优化最小二乘支持向量机故障诊断分类预测

分类预测 | Matlab实现KPCA-ISSA-LSSVM基于核主成分分析和改进的麻雀搜索算法优化最小二乘支持向量机故障诊断分类预测 目录 分类预测 | Matlab实现KPCA-ISSA-LSSVM基于核主成分分析和改进的麻雀搜索算法优化最小二乘支持向量机故障诊断分类预测分类效果基本描述程序设计参考资…

桥接模式:解耦抽象与实现,实现灵活多变的扩展结构

文章目录 一、引言二、应用场景与技术背景三、模式定义与实现四、实例详解五、优缺点分析总结: 一、引言 ​ 桥接模式是一种结构型设计模式,它将抽象部分与它的实现部分分离,使它们可以独立变化。这种模式通过创建一个抽象层和实现层的结构&…

TiDB离线部署、Tiup部署TiDB

先做tidb准备工作: 部署 TiDB 前的环境检查操作:TiDB 环境与系统配置检查 | PingCAP 文档中心 1.查看数据盘 fdisk -l (2,3)本人的分区已经是 ext4 文件系统不用分区,具体官方文档的分区: 4.查看数据盘…

C#_扩展方法

简述: 扩展方法所属类必需是静态类(类名依据规范通常为XXXExtension,XXX为被扩展类)扩展方法必需是公有的静态方法扩展方法的首个参数由this修饰,参数类型为被扩展类型 示例: static class DoubleExtens…

IDEA 2023.2 配置 JavaWeb 工程

目录 1 不使用 Maven 创建 JavaWeb 工程 1.1 新建一个工程 1.2 配置 Tomcat 1.3 配置模块 Web 2 使用 Maven 配置 JavaWeb 工程 2.1 新建一个 Maven 工程 2.2 配置 Tomcat 💥提示:IDEA 只有专业版才能配置 JavaWeb 工程,若是社区版&am…

Bert基础(二)--多头注意力

多头注意力 顾名思义,多头注意力是指我们可以使用多个注意力头,而不是只用一个。也就是说,我们可以应用在上篇中学习的计算注意力矩阵Z的方法,来求得多个注意力矩阵。让我们通过一个例子来理解多头注意力层的作用。以All is well…

【深蓝学院】移动机器人运动规划--第6章 模型预测控制(MPC)与运动规划--笔记

0. Outline 1. Reactive Control(反应式控制) 控制学中的 “Reactive Control” 通常指的是一种控制策略,它依赖于系统对特定事件或变化的即时反应,而不是按照预定的计划或策略行动。这种控制往往是基于当前的传感器输入来做出决…

神经网络基础——激活函数的选择、参数初始化

一、神经网络 1、神经网络 人工神经网络(Artificial Neural Network,即ANN)也简称为神经网络(NN)是一种模仿生物神经网络结构 和功能的计算模型。 2、基本部分 输入层:输入 x 输出层:输出 y 隐…

华清远见作业第四十二天——Qt(第四天)

思维导图&#xff1a; 编程&#xff1a; 代码&#xff1a; widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include<QTextToSpeech> //语音播报类 QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public Q…

Rust核心:【所有权】相关知识点

rust在内存资源管理上采用了&#xff08;先进优秀&#xff1f;算吗&#xff09;但特立独行的设计思路&#xff1a;所有权。这是rust的核心&#xff0c;贯穿在整个rust语言的方方面面&#xff0c;并以此为基点来重新思考和重构软件开发体系。 涉及到的概念点&#xff1a;借用&am…

基于协同过滤算法的体育商品推荐系统

摘要 本文深入探讨了基于协同过滤算法的体育商品推荐系统的构建方法及其在电子商务中的重要性。首先&#xff0c;介绍了协同过滤算法的基本原理&#xff0c;包括用户-商品矩阵、相似度度量和推荐生成。其次&#xff0c;探讨了协同过滤算法在体育商品推荐中的两种主要应用方式&a…

【Java程序设计】【C00276】基于Springboot的就业信息管理系统(有论文)

基于Springboot的就业信息管理系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的就业信息管理系统 本系统分为前台功能模块、管理员功能模块、学生功能模块、企业功能模块以及导师功能模块。 前台功能模块&…

C语言-指针详解速成

1.指针是什么 C语言指针是一种特殊的变量&#xff0c;用于存储内存地址。它可以指向其他变量或者其他数据结构&#xff0c;通过指针可以直接访问或修改存储在指定地址的值。指针可以帮助我们在程序中动态地分配和释放内存&#xff0c;以及进行复杂的数据操作。在C语言中&#…

【尚硅谷】MybatisPlus 学习笔记(下)

目录 六、插件 6.1、分页插件 6.1.1、添加配置类 6.1.2、测试 6.2、xml自定义分页 6.2.1、UserMapper中定义接口方法 6.2.2、UserMapper.xml中编写SQL 6.2.3、测试 6.3、乐观锁 6.3.1、场景 6.3.2、乐观锁与悲观锁 6.3.3、模拟修改冲突 数据库中增加商品表 添加数…

❤ hexo主题+Gitee搭建个人博客

Hexo的基本使用 1. ​认识 官网 官网地址&#xff1a;https://hexo.io/zh-cn/ 介绍 Hexo是一个快速、简洁且高效的博客框架。Hexo 使用 Markdown&#xff08;或其他渲染引擎&#xff09;解析文章&#xff0c;在几秒内&#xff0c;即可利用靓丽的主题生成静态网页。即把用…

Ansible 更换aliyun 镜像 并下载tree

目录 查看系统版本找到对应 的版本对当前镜像进行备份下载aliyuan更换成功安装扩展源更换源之后 的三个命令 这里安装一个aliyun 的镜像 本案例 仅供实验参考 生产环境中请谨慎使用 查看系统版本 先查看linux 的系统 版本 ansible slave -m shell -a uname -a找到对应 的版本…

基于Mapbox展示GDAL处理的3D行政区划展示实践

目录 前言 一、Gdal数据处理 1、数据展示 2、Java数据转换 二、Mapbox可视化 1、定义Mapbox地图 2、地图初始化 3、创建地图 三、界面优化 1、区域颜色设置 2、高度自适应和边界区分 3、中文标注 总结 前言 最近有遇到一个需求&#xff0c;用户想在地图上把行政区划…

Android相机调用-libusbCamera【外接摄像头】【USB摄像头】 【多摄像头预览】

有的自定义系统&#xff0c;对于自己外接的USB摄像头&#xff0c;android原生的camera和camera2都无法打开&#xff0c;CameraX也用不了。这时候就要用libusbCamera&#xff0c;这个库可以打开摄像头&#xff0c;还可以多摄像头同时预览。本文主要是同时打开3个USB摄像头的项目…

《Docker 简易速速上手小册》第2章 容器和镜像(2024 最新版)

文章目录 2.1 理解 Docker 容器2.1.1 重点基础知识2.1.2 重点案例&#xff1a;使用 Docker 运行 Python 应用2.1.3 拓展案例 1&#xff1a;Docker 中的 Flask 应用2.1.4 拓展案例 2&#xff1a;Docker 容器中的数据分析 2.2 创建与管理 Docker 镜像2.2.1 重点基础知识2.2.2 重点…

异步框架Celery在Django中的运用

参考博客&#xff1a;https://www.cnblogs.com/pyedu/p/12461819.html 参考视频&#xff1a;01 celery的工作机制_哔哩哔哩_bilibili 定义&#xff1a;简单灵活、处理大量消息的分布式系统&#xff0c;专注于实时处理异步队列&#xff0c;支持任务调度 主要架构&#xff1a; …