Python算法题集_实现 Trie [前缀树]

 Python算法题集_实现 Trie [前缀树]

  • 题208:实现 Trie (前缀树)
  • 1. 示例说明
  • 2. 题目解析
    • - 题意分解
    • - 优化思路
    • - 测量工具
  • 3. 代码展开
    • 1) 标准求解【定义数据类+默认字典】
    • 2) 改进版一【初始化字典+无额外类】
    • 3) 改进版二【字典保存结尾信息+无额外类】
  • 4. 最优算法
  • 5. 相关资源

本文为Python算法题集之一的代码示例

题208:实现 Trie (前缀树)

1. 示例说明

  • Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。

    请你实现 Trie 类:

    • Trie() 初始化前缀树对象。
    • void insert(String word) 向前缀树中插入字符串 word
    • boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false
    • boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false

    示例:

    输入
    ["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
    [[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
    输出
    [null, null, true, false, true, null, true]解释
    Trie trie = new Trie();
    trie.insert("apple");
    trie.search("apple");   // 返回 True
    trie.search("app");     // 返回 False
    trie.startsWith("app"); // 返回 True
    trie.insert("app");
    trie.search("app");     // 返回 True
    

    提示:

    • 1 <= word.length, prefix.length <= 2000
    • wordprefix 仅由小写英文字母组成
    • insertsearchstartsWith 调用次数 总计 不超过 3 * 104

2. 题目解析

- 题意分解

  1. 本题是为自动补完、拼写检查等创造一个高效率的检索类
  2. 基本的设计思路迭代单词,每层用字典保存,同时还需要保存单词结尾信息【search检测结尾、startWith不检测】

- 优化思路

  1. 通常优化:减少循环层次

  2. 通常优化:增加分支,减少计算集

  3. 通常优化:采用内置算法来提升计算速度

  4. 分析题目特点,分析最优解

    1. 可以尝试使用默认字典defaultdict

    2. 本题都是小写字母,因此26个元素的字典就可以保存一个层级

    3. 所有单词字符都是ASCII码,Ord值都在0-127,因此128个元素的字典可以正常使用【超时测试用例,需要128一层】

    4. 可以考虑将单词结尾信息保存在字典中,用一个单词中不会出现的字符即可,比如’#’


- 测量工具

  • 本地化测试说明:LeetCode网站测试运行时数据波动很大【可把页面视为功能测试】,因此需要本地化测试解决数据波动问题
  • CheckFuncPerf(本地化函数用时和内存占用测试模块)已上传到CSDN,地址:Python算法题集_检测函数用时和内存占用的模块
  • 本题本地化超时测试用例自己生成,详见章节【最优算法】,需要安装和部署**NLTK**

3. 代码展开

1) 标准求解【定义数据类+默认字典】

使用默认字典,定位专门的数据类,使用类属性保存单词结尾信息

页面功能测试,马马虎虎,超过33%在这里插入图片描述

import CheckFuncPerf as cfpclass prenode:def __init__(self):self.chars = defaultdict(int)class Trie_base:def __init__(self):self.node = prenode()self.bEnd = Falsedef searchPrefix(self, prefix):tmpNode = selffor achar in prefix:ichar = ord(achar) - ord("a")if tmpNode.node.chars[ichar] == 0:return NonetmpNode = tmpNode.node.chars[ichar]return tmpNodedef insert(self, word):tmpNode = selffor achar in word:ichar = ord(achar) - ord("a")if tmpNode.node.chars[ichar] == 0:tmpNode.node.chars[ichar] = Trie_base()tmpNode = tmpNode.node.chars[ichar]tmpNode.bEnd = Truedef search(self, word):node = self.searchPrefix(word)return node is not None and node.bEnddef startsWith(self, prefix):return self.searchPrefix(prefix) is not NonetmpTrie = Trie_base()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 运行结果
函数 testTrie 的运行时间为 7127.62 ms;内存使用量为 373008.00 KB 执行结果 = 99

2) 改进版一【初始化字典+无额外类】

将字典数据和单词结尾信息都保存在节点类中,创建类同时初始化字典的128个元素【按题意只需26,本类已经按超时测试改写】

页面功能测试,马马虎虎,超过65%在这里插入图片描述

import CheckFuncPerf as cfpclass Trie_ext1:def __init__(self):self.data = [None] * 128self.bEnd = Falsedef searchPrefix(self, prefix):tmpnode = selffor achar in prefix:ichar = ord(achar)if not tmpnode.data[ichar]:return Nonetmpnode = tmpnode.data[ichar]return tmpnodedef insert(self, word):tmpnode = selffor achar in word:ichar = ord(achar)if not tmpnode.data[ichar]:tmpnode.data[ichar] = Trie_ext1()tmpnode = tmpnode.data[ichar]tmpnode.bEnd = Truedef search(self, word):tmpnode = self.searchPrefix(word)return tmpnode is not None and tmpnode.bEnddef startsWith(self, prefix):return self.searchPrefix(prefix) is not NonetmpTrie = Trie_ext1()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 运行结果
函数 testTrie 的运行时间为 5857.32 ms;内存使用量为 793700.00 KB 执行结果 = 99

3) 改进版二【字典保存结尾信息+无额外类】

在字典中保存单词结尾信息,将字典数据保存在节点类中,创建类时不初始化字典

页面功能测试,性能卓越,超越96%在这里插入图片描述

import CheckFuncPerf as cfpclass Trie_ext2:def __init__(self):self.tree = {}def insert(self, word):tree = self.treefor achar in word:if achar not in tree:tree[achar] = {}tree = tree[achar]tree["#"] = "#"def search(self, word):tree = self.treefor achar in word:if achar not in tree:return Falsetree = tree[achar]return "#" in treedef startsWith(self, prefix):tree = self.treefor achar in prefix:if achar not in tree:return Falsetree = tree[achar]return TruetmpTrie = Trie_ext2()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 运行结果
函数 testTrie 的运行时间为 1670.38 ms;内存使用量为 146692.00 KB 执行结果 = 99

4. 最优算法

根据本地日志分析,最优算法为第3种方式【字典保存结尾信息+无额外类】Trie_ext2

本题大概有以下结论:

  1. 独立的变量,如果能保存在字典结构里,减少独立的变量数,可以提升性能
  2. 数据集的默认初始化可能会扩大内存使用,同时数据量过大、内存过大也拖累性能
import random
from nltk.corpus import words
word_list = list(words.words())
def testTrie(aTrie, actions):for act in actions:if act[0]==1:   # insertaTrie.insert(act[1])elif act[0]==2: # searchaTrie.search(act[1])elif act[0]==3: # startsWithaTrie.startsWith(act[1])return 99
import random
actions = []
iLen = 1000000
for iIdx in range(iLen):actions.append([random.randint(1, 3), random.choice(word_list)])
tmpTrie = Trie_base()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))
tmpTrie = Trie_ext1()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))
tmpTrie = Trie_ext2()
result = cfp.getTimeMemoryStr(testTrie, tmpTrie, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 算法本地速度实测比较
函数 testTrie 的运行时间为 7127.62 ms;内存使用量为 373008.00 KB 执行结果 = 99
函数 testTrie 的运行时间为 5857.32 ms;内存使用量为 793700.00 KB 执行结果 = 99
函数 testTrie 的运行时间为 1670.38 ms;内存使用量为 146692.00 KB 执行结果 = 99

5. 相关资源

本文代码已上传到CSDN,地址:**Python算法题源代码_LeetCode(力扣)_**实现Trie(前缀树)

一日练,一日功,一日不练十日空

may the odds be ever in your favor ~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/263559.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TensorRT及CUDA自学笔记006 PTX、PTX兼容性及二进制兼容性

TensorRT及CUDA自学笔记006 PTX、PTX兼容性及二进制兼容性 PTX定义 PTX是CUDA平台的一种虚拟机器和指令集&#xff0c;可以理解为一种CUDA平台的汇编语言使用C编写的CUDA程序首先被转换成PTX指令集&#xff0c;PTX指令在经过优化后再转换为特定GPU架构对应的指令集&#xff0…

[electron]官方示例解析

官方例子 github链接 main.js const { app, BrowserWindow } require(electron)说句实话这里的语法是有部分看不懂的。导入模块虽然electron有很多模块。但是这里只是用到了app 和 BrowserWindow function createWindow () {// Create the browser window.const mainWindo…

uni-app 经验分享,从入门到离职(四)——页面栈以及页面跳转的 API(开发经验总结)

文章目录 &#x1f4cb;前言⏬关于专栏 &#x1f3af;什么是页面栈&#x1f9e9;页面跳转方法&#x1f4cc; uni.navigateTo(OBJECT)&#x1f4cc; uni.redirectTo(OBJECT)&#x1f4cc; uni.reLaunch(OBJECT)&#x1f4cc; uni.switchTab(OBJECT)&#x1f4cc; uni.navigateBa…

【嵌入式学习】QT-Day2-Qt基础

1> 思维导图 https://lingjun.life/wiki/EmbeddedNote/20QT 2>登录界面优化 使用手动连接&#xff0c;将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数 将登录按钮使用qt5版本的连接到自定义的槽函数中&#xff…

一台台式电脑的耗电量有多少瓦?你知道吗?

核实后将予以处理。 感谢您为社区和谐做出的贡献。 一般来说&#xff0c;大多数台式电脑的功率在250W左右&#xff0c;也就是每4小时耗一度电。 一般有每小时100W左右的低功耗计算机&#xff0c;也有每小时1000W左右的高功耗计算机。 对于笔记本电脑来说&#xff0c;每小时约为…

Java Web(七)__Tomcat(一)

JavaWeb 服务器 介绍 为什么需要&#xff1f; Web服务器是一个应用程序&#xff08;软件&#xff09;&#xff0c;对HTTP协议的操作进行封装&#xff0c;使得程序员不必直接对协议进行操作&#xff0c;让Web开发更加便捷。主要功能是"提供网上信息浏览服务"。Web服…

探索视频数据的无限可能,Sora引领生成模型新纪元的技术解读

最近几天&#xff0c;open AI 推出的新的文生视频模型sora再次惊艳AI界&#xff0c;Sora模型近期发布的底层技术报告引起了广泛关注。作为前沿的视频生成与编辑工具&#xff0c;Sora究竟有何独特之处&#xff1f;本文就基于其几乎是文档来对其技术原理进行解读。下面让我们一起…

SSD代码解析

input&#xff1a;(2, 3, 300, 300) backbone&#xff1a;在VGG16的基础上进行改动。取vgg16的conv5_3&#xff0c;在mmdet的实现中没用BN&#xff0c;只有conv、ReLU、maxpool层&#xff0c;conv5_3是第30层&#xff0c;输出大小为(2, 512, 19, 19)。接着用33-s1-p1的maxpool…

【C++】类和对象之拷贝构造函数篇

个人主页 &#xff1a; zxctscl 文章封面来自&#xff1a;艺术家–贤海林 如有转载请先通知 文章目录 1. 前言2. 传值传参和传引用传参3. 概念4. 特征 1. 前言 在前面学习了6个默认成员函数中的构造函数和析构函数 【C】构造函数和析构函数详解&#xff0c;接下来继续往后看拷…

什么是MapReduce

1.1 MapReduce到底是什么 Hadoop MapReduce是一个软件框架&#xff0c;基于该框架能够容易地编写应用程序&#xff0c;这些应用程序能够运行在由上千个商用机器组成的大集群上&#xff0c;并以一种可靠的&#xff0c;具有容错能力的方式并行地处理上TB级别的海量数据集。这个定…

记一次生产jvm oom问题

前言 jvm添加以下参数&#xff0c;发生OOM时自动导出内存溢出文件 -XX:HeapDumpOnOutOfMemoryError -XX:HeapDumpPath/opt 内存分析工具&#xff1a; MAT, 下载地址&#xff1a;Eclipse Memory Analyzer Open Source Project | The Eclipse Foundation&#xff0c; 注意工具地址…

企业如何定制化“可靠的”系统,实现数字化转型?

二十大提出高质量发展是首要任务&#xff0c;为顺应数字经济时代的发展&#xff0c;数字化转型正不断赋能各行各业。越来越多的企业管理者也意识到数字化转型是帮助企业提升内部运营效率&#xff0c;提升业务开展效率&#xff0c;减低企业成本的有效手段。 那么如何推动企业数字…

论文阅读——SimpleClick

SimpleClick: Interactive Image Segmentation with Simple Vision Transformers 模型直接在VIT上增加交互是分割 用VIT MAE方法训练的预训练权重 用交互式分割方法微调&#xff0c;微调流程&#xff1a; 1、在当前分割自动模拟点击&#xff0c;没有人为提供的点击 受到RITM启发…

马斯克称创建OPENAI是希望开源非营利 但现在却闭源和被微软控制

作为 OPENAI 的联合创始人&#xff0c;埃隆马斯克其实是个坚定的 “反” 人工智能的人&#xff0c;原因是马斯克认为人工智能是人类文明最大的风险之一&#xff0c;应该进行严格监管&#xff0c;至少应该由国家级层面的监管。 2015 年马斯克联合 Sam Altman (OPENAI 现任 CEO)…

智慧城市与数字孪生:共创未来城市新篇章

一、引言 随着科技的飞速发展&#xff0c;智慧城市与数字孪生已成为现代城市建设的核心议题。智慧城市注重利用先进的信息通信技术&#xff0c;提升城市治理水平&#xff0c;改善市民生活品质。而数字孪生则通过建立物理城市与数字模型之间的连接&#xff0c;为城市管理、规划…

springmvc+ssm+springboot房屋中介服务平台的设计与实现 i174z

本论文拟采用计算机技术设计并开发的房屋中介服务平台&#xff0c;主要是为用户提供服务。使得用户可以在系统上查看房屋出租、房屋出售、房屋求购、房屋求租&#xff0c;管理员对信息进行统一管理&#xff0c;与此同时可以筛选出符合的信息&#xff0c;给笔者提供更符合实际的…

IOBR2 更新(学习自备)

IOBR查看其收录的相关基因集(自备)_肿瘤 tme特征 iobr-CSDN博客 IOBR2&#xff1a;多维度解析肿瘤微环境 - 知乎 (zhihu.com) 学习手册&#xff1a;https://iobr.github.io/book/ &#xff08;里面有详细教程&#xff09; 系统综合的分析工具&#xff08;Immuno-Oncology Bi…

【Web】CTFSHOW 常用姿势刷题记录(全)

目录 web801 web802 web803 web804 web805 web806 web807 法一&#xff1a;反弹shell 法二&#xff1a;vps外带 web808 web809 web810 web811 web812 web813 web814 web815 web816 web817 web818 web819 web820 web821 web822 web823 web824 web825…

NXP实战笔记(七):S32K3xx基于RTD-SDK在S32DS上配置ICU输入捕获

目录 1、概述 2、输入捕获SDK配置 2.1、SAIC中断方式 2.2、IPWM或者IPM 1、概述 输入捕获&#xff0c;可以抓取高电平时间、低电平时间、占空比、周期、边沿检测与回调函数、边沿计数&#xff08;ABZ解码&#xff09;、时间戳、唤醒中断。 记录一下根据Emios模块实现上述部分…

CSS列表学习2

之前学习了列表&#xff1b;继续熟悉&#xff1b; <!DOCTYPE html> <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/><title></title><meta charset"utf-8" /><…