【Python从入门到进阶】49、当当网Scrapy项目实战(二)

接上篇《48、当当网Scrapy项目实战(一)》
上一篇我们正式开启了一个Scrapy爬虫项目的实战,对当当网进行剖析和抓取。本篇我们继续编写该当当网的项目,讲解刚刚编写的Spider与item之间的关系,以及如何使用item,以及使用pipelines管道进行数据下载的操作。

一、使用item封装数据

在上一篇我们通过编写的爬虫文件,获取到当当网“一般管理类”书籍的第一页的明细列表信息。但是我们仅仅是将爬取到的目标信息print打印到控制台了,没有保存下来,这里我们就需要item先进行数据的封装。在“dang.py”爬虫文件里,我们获取到了目标数据,这些数据是我们之前通过item定义过这些数据的数据结构,但是没有使用过:

import scrapyclass ScrapyDangdang01Item(scrapy.Item):# 书籍图片src = scrapy.Field()# 书籍名称title = scrapy.Field()# 书籍作者search_book_author = scrapy.Field()# 书籍价格price = scrapy.Field()# 书籍简介detail = scrapy.Field()

那么,我们如何使用item定义好的数据结构呢?我们在爬虫文件中,首先通过from引用上面的class的名称:

from scrapy_dangdang_01.items import ScrapyDangdang01Item

注:可能编译器会报错,这是编译器版本的问题,不影响后面的执行,可以忽略。
导入完毕之后,我们创建一个book对象,这个对象就是把上面那些零散的信息全部都组装起来的集合体,然后在构造函数中,将所有抓取到的属性,挨个赋值到item文件中的各个属性中去:

book = ScrapyDangdang01Item(src=src, title=title, search_book_author=search_book_author, price=price, detail=detail)

然后这个book对象,就要交给pipelines进行下载。

二、设置yield返回目标对象

这里我们需要使用到Python中的yield指令,它的作用如下:

        yield是Python中的一个关键字,主要用于定义生成器(generator)。生成器是一种特殊的迭代器,可以逐个地生成并返回一系列的值,而不是一次性地生成所有的值。这可以节省大量的内存,尤其是在处理大量数据时。

        yield的工作原理类似于return,但它不仅仅返回一个值,还可以保存生成器的状态,使得函数在下次调用时可以从上次离开的地方继续执行。
下面是一个简单的生成器函数的例子:

def simple_generator():  n = 1  while n <= 5:  yield n  n += 1  for i in simple_generator():  print(i)

        在这个例子中,simple_generator 是一个生成器函数,它使用 yield 来生成一系列的数字。当我们对这个生成器进行迭代(例如,在 for 循环中)时,它会逐个生成数字 1 到 5,并打印出来。

所以我们这里使用yield是用来将上面for循环中的每一个book交给pipelines处理,循环一个处理一个。编写代码如下:

# 将数据封装到item对象中
book = ScrapyDangdang01Item(src=src, title=title, search_book_author=search_book_author, price=price, detail=detail)# 获取一个book对象,就将该对象交给pipelines
yield book

此时for循环每执行一次,爬虫函数就会返回一个封装好的book对象。完整的爬虫文件代码如下(scrapy_dangdang_01/scrapy_dangdang_01/spiders/dang.py):

import scrapyfrom scrapy_dangdang_01.items import ScrapyDangdang01Itemclass DangSpider(scrapy.Spider):name = "dang"allowed_domains = ["category.dangdang.com"]start_urls = ["http://category.dangdang.com/cp01.22.01.00.00.00.html"]def parse(self, response):# 获取所有的图书列表对象li_list = response.xpath('//ul[@id="component_59"]/li')# 遍历li列表,获取每一个li元素的几个值for li in li_list:# 书籍图片src = li.xpath('.//img/@data-original').extract_first()# 第一张图片没有@data-original属性,所以会获取到控制,此时需要获取src属性值if src:src = srcelse:src = li.xpath('.//img/@src').extract_first()# 书籍名称title = li.xpath('.//img/@alt').extract_first()# 书籍作者search_book_author = li.xpath('./p[@class="search_book_author"]//span[1]//a[1]/@title').extract_first()# 书籍价格price = li.xpath('./p[@class="price"]//span[@class="search_now_price"]/text()').extract_first()# 书籍简介detail = li.xpath('./p[@class="detail"]/text()').extract_first()# print("======================")# print("【图片地址】", src)# print("【书籍标题】", title)# print("【书籍作者】", search_book_author)# print("【书籍价格】", price)# print("【书籍简介】", detail)# 将数据封装到item对象中book = ScrapyDangdang01Item(src=src, title=title, search_book_author=search_book_author, price=price, detail=detail)# 获取一个book对象,就将该对象交给pipelinesyield book

三、编写pipelines保存数据至本地

首先我们进入setting.py中,设置“ITEM_PIPELINES”参数,在其中添加我们设置的pipelines管道文件的路径地址:

# 管道可以有很多个,前面是管道名后面是管道优先级,优先级的范围是1到1000,值越小优先级越高
ITEM_PIPELINES = {"scrapy_dangdang_01.pipelines.ScrapyDangdang01Pipeline": 300,
}

此时我们进入pipelines.py中编写管道逻辑:

from itemadapter import ItemAdapter# 如果需要使用管道,要在setting.py中打开ITEM_PIPELINES参数
class ScrapyDangdang01Pipeline:# process_item函数中的item,就是爬虫文件yield的book对象def process_item(self, item, spider):# 这里写入文件需要用'a'追加模式,而不是'w'写入模式,因为写入模式会覆盖之前写的with open('book.json', 'a', encoding='utf-8') as fp:# write方法必须写一个字符串,而不能是其他的对象fp.write(str(item))return item

此时我们执行爬虫函数,可以看到执行成功:

然后我们打开生成的book.json文件,“Ctrl+Alt+l”排版之后,可以看到我们爬取的数据已经生成了:

上面就是管道+爬虫+item的综合使用模式。

四、进行必要的优化

在上面的pipelines管道函数中,我们每一次获取到爬虫for循环yield的book对象时,都需要打开一次文件进行写入,比较耗费读写资源,对文件的操作过于频繁。

优化方案:在爬虫执行开始的时候就打开文件,爬虫执行结束之后再关闭文件。此时我们就需要了解pipelines的生命周期函数。分别为以下几个方法:

(1)open_spider(self, spider): 当爬虫开始时,这个方法会被调用。你可以在这里进行一些初始化的操作,比如打开文件、建立数据库连接等。
(2)close_spider(self, spider): 当爬虫结束时,这个方法会被调用。你可以在这里进行清理操作,比如关闭文件、断开数据库连接等。
(3)process_item(self, item, spider): 这是pipelines中最核心的方法。每个被抓取并返回的项目都会经过这个方法。你可以在这里对数据进行清洗、验证、转换等操作。这个方法必须返回一个项目(可以是原项目,也可以是经过处理的新项目),或者抛出一个DropItem异常,表示该项目不应被进一步处理。

此时我们就可以使用open_spider定义爬虫开始时打开文件,close_spider定义爬虫结束时关闭文件,而在爬虫运行期间的process_item方法中,只进行写的操作,完整代码如下:

from itemadapter import ItemAdapter
import json# 如果需要使用管道,要在setting.py中打开ITEM_PIPELINES参数
class ScrapyDangdang01Pipeline:# 1、在爬虫文件开始执行前执行的方法def open_spider(self,spider):print('++++++++爬虫开始++++++++')# 这里写入文件需要用'a'追加模式,而不是'w'写入模式,因为写入模式会覆盖之前写的self.fp = open('book.json', 'a', encoding='utf-8') # 打开文件写入# 2、爬虫文件执行时,返回数据时执行的方法# process_item函数中的item,就是爬虫文件yield的book对象def process_item(self, item, spider):# write方法必须写一个字符串,而不能是其他的对象self.fp.write(str(item)) # 将爬取信息写入文件return item# 在爬虫文件开始执行后执行的方法def close_spider(self, spider):print('++++++++爬虫结束++++++++')self.fp.close() # 关闭文件写入

这样就能解决对文件操作频繁,耗费读写资源的问题了。

五、多管道的支持

pipelines支持设置多个管道,例如我们在原来的pipelines.py中再定义一个管道class类,用来下载每一个图书的图片:

# 下载爬取到的book对象中的图片文件
class ScrapyDangdangImagesPipeline:def process_item(self, item, spider):# 获取book的src属性,并按照地址下载图片,保存值books文件夹下url = 'http:' + item.get('src')filename = './books/' + item.get('title') + '.jpg'# 检查并创建目录if not os.path.exists('./books/'):os.makedirs('./books/')urllib.request.urlretrieve(url=url, filename=filename)return item

然后我们在setting.py中的ITEM_PIPELINES参数中追加这个管道:

# 管道可以有很多个,前面是管道名后面是管道优先级,优先级的范围是1到1000,值越小优先级越高
ITEM_PIPELINES = {"scrapy_dangdang_01.pipelines.ScrapyDangdang01Pipeline": 300,"scrapy_dangdang_01.pipelines.ScrapyDangdangImagesPipeline": 301
}

运行爬虫文件,可以看到相关的图片已经全部下载下来:

并且都是可以打开的图片:

至此管道+爬虫+item的综合使用模式讲解完毕。下一篇我们来讲解Scrapy的多页面下载如何实现。

参考:尚硅谷Python爬虫教程小白零基础速通
转载请注明出处:https://guangzai.blog.csdn.net/article/details/136283532

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/263926.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DIcom调试Planar configuration

最近和CBCT组同事调dicom图像 这边得图像模块老不兼容对方得dicom文件。 vtk兼容&#xff0c;自己写得原生解析不兼容。 给对方调好了格式&#xff0c;下次生成文件还会有错。 简单记录下&#xff0c;日后备查。 今天对方又加了 个字段&#xff1a;Planar configuration 查…

计算机网络-网络互联

文章目录 网络互联网络互联方法LAN-LAN&#xff1a;网桥及其互连原理使用网桥实现LAN-LAN使用交换机扩展局域网使用路由器连接局域网 LAN-WANWAN-WAN路由选择算法非自适应路由选择算法自适应路由选择算法广播路由选择算法&#xff1a;分层路由选择算法 网络互联 网络互联是指利…

【安装记录】解决ssh密码正确,却无法连接到虚拟机

可能是没有允许Root登录 解决办法&#xff1a;修改/etc/ssh/sshd_config文件&#xff0c;将 PermitRootLogin 项打开

AI大模型与小模型之间的“脱胎”与“反哺”(第一篇)

一、AI小模型脱胎于AI大模型&#xff0c;而AI小模型群又可以反哺AI大模型 AI大模型&#xff08;如GPT、BERT等&#xff09;通常拥有大量的参数和训练数据&#xff0c;能够生成或理解复杂的文本内容。这些大模型在训练完成后&#xff0c;可以通过剪枝、微调等方式转化为小模型&…

WordPres Bricks Builder 前台RCE漏洞复现(CVE-2024-25600)

0x01 产品简介 Bricks Builder是一款用于WordPress的开发主题,提供直观的拖放界面,用于设计和构建WordPress网站。它使用户能够轻松创建自定义的网页布局和设计,无需编写或了解复杂的代码。Bricks Builder具有用户友好的界面和强大的功能,使用户可以通过简单的拖放操作添加…

在autodl搭建stable-diffusion-webui+sadTalker

本文介绍在autodl.com搭建gpu服务器&#xff0c;实现stable-diffusion-webuisadTalker功能&#xff0c;图片音频 可生成视频。 autodl租GPU 自己本地部署SD环境会遇到各种问题&#xff0c;网络问题&#xff08;比如huggingface是无法访问&#xff09;&#xff0c;所以最好的方…

qt-C++笔记之事件过滤器

qt-C笔记之事件过滤器 —— 杭州 2024-02-25 code review! 文章目录 qt-C笔记之事件过滤器一.使用事件过滤器和不使用事件过滤器对比1.1.使用事件过滤器1.2.不使用事件过滤器1.3.比较 二.Qt 中事件过滤器存在的意义三.为什么要重写QObject的eventFilter方法&#xff1f;使用QO…

【服务器数据恢复】通过reed-solomon算法恢复raid6数据的案例

服务器数据恢复环境&#xff1a; 一台网站服务器中有一组由6块磁盘组建的RAID6磁盘阵列&#xff0c;操作系统层面运行MySQL数据库和存放一些其他类型文件。 服务器故障&#xff1a; 该服务器在工作过程中&#xff0c;raid6磁盘阵列中有两块磁盘先后离线&#xff0c;不知道是管理…

力扣--动态规划1027.最长等差数列

思路分析&#xff1a; 使用动态规划的思想&#xff0c;定义二维数组dp&#xff0c;其中dp[i][j]表示以nums[i]为结尾&#xff0c;公差为(j-1000)的等差数列长度。为了适应负数的情况&#xff0c;将公差的范围设为[-1000, 1000]&#xff0c;并且加上1000作为数组索引。 初始化r…

2024年环境安全科学、材料工程与制造国际学术会议(ESSMEM2024)

【EI检索】2024年环境安全科学、材料工程与制造国际学术会议&#xff08;ESSMEM2024) 会议简介 我们很高兴邀请您参加将在三亚举行的2024年环境安全科学、材料工程和制造国际学术会议&#xff08;ESSMEM 2024&#xff09;。 ESSMEM2024将汇集世界各国和地区的研究人员&…

HarmonyOS创建一个ArkTS卡片

创建一个ArkTS卡片 在已有的应用工程中&#xff0c;创建ArkTS卡片&#xff0c;具体操作方式如下。 创建卡片。 根据实际业务场景&#xff0c;选择一个卡片模板。 在选择卡片的开发语言类型&#xff08;Language&#xff09;时&#xff0c;选择ArkTS选项&#xff0c;然后单…

vscode使用restClient实现各种http请求

vscode使用restClient实现各种http请求 一&#xff0c;安装插件 首先&#xff0c;我们要在vscode的扩展中&#xff0c;搜索rest Client&#xff0c;然后安装它&#xff0c;这里我已经安装过了。 安装后&#xff0c;我们就可以使用rest client插件进行http各种操作了。 二&…

项目解决方案:街道社区视频监控接入、汇聚和联网设计方案

目 录 一、客户需求 二、网络拓扑图 三、方案描述 四、系统配置 1、服务器配置 2、带宽配置 五、方案优势 1. 平台可堆叠使用 2. 支持主流接入协议 4. 多种终端显示 5. 客户端功能强大 6. 一机一档 一、客户需求 1&#xff0c;一个街道有十个社…

Orange3数据预处理(列选择组件)数据角色及类型描述

在Orange3的文件组件中&#xff0c;datetime、categorical、numeric以及text代表不同种类的数据类型&#xff0c;具体如下&#xff1a; datetime&#xff1a;代表日期和时间类型的数据。通常用于时间序列分析、生存分析和其他需要考虑时间因素的机器学习任务中。例如&#xff0…

纽约纳斯达克大屏投放受众群体有哪些-大舍传媒

纽约纳斯达克大屏投放受众群体有哪些-大舍传媒 1. 纳斯达克大屏的概述 纳斯达克大屏是全球金融市场中最出名的电子交易平台之一。作为一个重要的金融信息传递渠道&#xff0c;纳斯达克大屏吸引了来自全球的投资者的目光。在这个巨大的投放平台上&#xff0c;大舍传媒希望为客…

【Flink精讲】Flink性能调优:内存调优

内存调优 内存模型 JVM 特定内存 JVM 本身使用的内存&#xff0c;包含 JVM 的 metaspace 和 over-head 1&#xff09; JVM metaspace&#xff1a; JVM 元空间 taskmanager.memory.jvm-metaspace.size&#xff0c;默认 256mb 2&#xff09; JVM over-head 执行开销&#xff1…

【小沐学QT】QT学习之Web控件的使用

文章目录 1、简介1.1 Qt简介1.2 Qt下载和安装1.3 Qt快捷键1.4 Qt帮助 2、QtWeb控件2.1 测试代码1&#xff08;QApplication&#xff09;2.2 测试代码2&#xff08;QApplicationQWidget&#xff09;2.3 测试代码3&#xff08;QApplicationQMainWindow&#xff09;2.4 测试代码4&…

关系型数据库事务的四性ACID:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durability)

关系型数据库事务的四性ACID:原子性&#xff08;Atomicity&#xff09;、一致性&#xff08;Consistency&#xff09;、隔离性&#xff08;Isolation&#xff09;和持久性&#xff08;Durability&#xff09; 事务的四性通常指的是数据库事务的ACID属性&#xff0c;包括原子性&…

【计算机网络】传输层——TCP和UDP详解

文章目录 一. TCP和UDP简介二. UDP 协议详解1. UDP报文格式2. UDP的使用场景 三. TCP 协议详解1. TCP报文格式2. TCP协议的重要机制确认应答&#xff08;保证可靠传输的最核心机制&#xff09;超时重传连接管理&#xff08;三次握手、四次挥手&#xff09;&#xff01;&#xf…

Java+SpringBoot+Vue+MySQL:疫情隔离酒店管理的全面技术解决方案

✍✍计算机毕业编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java、…