深度学习目标检测】二十、基于深度学习的雾天行人车辆检测系统-含数据集、GUI和源码(python,yolov8)

雾天车辆行人检测在多种场景中扮演着至关重要的角色。以下是其作用的几个主要方面:

  1. 安全性提升:雾天能见度低,视线受阻,这使得驾驶者和行人在道路上的感知能力大大降低。通过车辆行人检测技术,可以在雾天条件下及时发现道路上的其他交通参与者,从而提前做出反应,避免潜在的危险,提升驾驶和行走的安全性。
  2. 辅助驾驶:在雾天,驾驶者往往难以准确判断前方道路的情况,包括其他车辆和行人的位置、速度和方向等。车辆行人检测技术可以提供这些关键信息,帮助驾驶者更好地了解道路状况,从而做出更准确的驾驶决策。
  3. 交通效率提升:在雾天条件下,交通往往容易受到影响,出现拥堵、事故等情况。通过车辆行人检测技术,可以及时发现并处理这些问题,从而保持交通的顺畅,提升交通效率。
  4. 自动驾驶技术的重要组成部分:随着自动驾驶技术的不断发展,车辆行人检测技术成为了其中的重要组成部分。在自动驾驶系统中,车辆需要能够准确感知周围环境的变化,包括其他车辆和行人的位置、速度和方向等。而雾天车辆行人检测技术可以帮助自动驾驶系统更好地应对恶劣天气条件,提高系统的可靠性和稳定性。

总的来说,雾天车辆行人检测技术在提升道路安全、辅助驾驶、提高交通效率以及推动自动驾驶技术的发展等方面都发挥着重要作用。

本文介绍了基于深度学习yolov8的雾天行人车辆检测系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

检测结果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

1、安装pytorch

根据本机是否有GPU,安装适合自己的pytorch,如果需要训练自己的模型,建议使用GPU版本。

①GPU版本的pytorch安装

对于GPU用户,安装GPU版本的pytorch,首先在cmd命令行输入nvidia-smi,查看本机的cuda版本,如下图,我的cuda版本是12.4(如果版本过低,建议升级nvidia驱动):

打开pytorch官网,选择合适的版本安装pytorch,如下图,建议使用conda安装防止cuda版本问题出现报错:

②CPU版本pytorch安装

打开pytorch官网,选择CPU版本安装pytorch,如下图:

2、安装yolov8

在命令行使用如下命令安装:

pip install ultralytics

二、数据集准备

本项目的数据集为RTTS数据集,RTTS 数据集源自 RESIDE-β 数据集,包含 4322 张真实雾天图片,作为项目训练集,另外有 100 张真实场景图片作为验证集。

该数据集包含5各类别:

person/ car/ bus/ bicycle/ motorbike

数据集图片示例如下图所示:

为了使用yolov8进行训练,需要将数据集转为yolo格式,本文提供转换好的数据集连接:rtts-yolov8数据集

三、模型配置及训练

1、数据集配置文件

创建数据集配置文件ug.yaml,内容如下(将path路径替换为自己的数据集路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:\DeepLearning\datasets\csdn\UG\UG_yolov8  # 替换为自己的数据集路径
train: images/train 
val: images/val 
test: images/val  # Classes
names:# 0: normal0: person1: car2: bus3: bicycle4: motorbike

2、训练模型

使用如下命令训练模型,数据配置文件路径更改为自己的路径,model根据自己的需要使用yolov8n/s/l/x版本,其他参数根据自己的需要进行设置:

yolo detect train project=ug name=train exist_ok data=ug/ug.yaml model=yolov8n.yaml epochs=300 imgsz=640

3、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val imgsz=640 model=ug/train/weights/best.pt data=ug/ug.yaml

精度如下:

# Ultralytics YOLOv8.1.10 🚀 Python-3.9.18 torch-2.2.0 CUDA:0 (NVIDIA GeForce RTX 3060, 12288MiB)
# YOLOv8n summary (fused): 168 layers, 3006623 parameters, 0 gradients, 8.1 GFLOPs
# val: Scanning D:\DeepLearning\datasets\csdn\UG\UG_yolov8\labels\val.cache... 100 images, 0 backgrounds, 0 corrupt: 100%|██████████| 100/100 [00:00<?, ?it/s]
#                  Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 7/7 [00:07<00:00,  1.00s/it]
#                    all        100        773      0.735      0.448      0.544      0.308
#                 person        100        173      0.732       0.41      0.473      0.197
#                    car        100        479      0.793      0.658      0.744      0.458
#                    bus        100         49      0.679       0.49       0.65      0.393
#                bicycle        100         12      0.766      0.333      0.408      0.255
#              motorbike        100         60      0.706       0.35      0.444      0.236
# Speed: 1.7ms preprocess, 7.9ms inference, 0.0ms loss, 2.5ms postprocess per image
# Results saved to runs\detect\val3
# 💡 Learn more at https://docs.ultralytics.com/modes/val

四、推理

训练好了模型,可以使用如下代码实现推理,权重路径修改为自己的路径:

from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')image_path = 'test.jpg'
results = model(image_path)  # 结果列表# 展示结果
for r in results:im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

五、界面开发

使用pyqt5开发gui界面,支持图片、视频、摄像头输入,支持导出到指定路径,其GUI如下图(完整GUI代码可在下方链接下载):

代码下载连接:基于yolov8的雾天车辆行人检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/264677.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

等保测评与商用密码共铸工控安全“双评合规”新篇章

最近听说了一个段子&#xff1a;“网络安全就像美女的内衣&#xff0c;等保和密评就是最贴身的内衣两件套&#xff0c;上下身一件都不能少。否则你的魔鬼身材&#xff08;核心数据&#xff09;就有可能被色狼&#xff08;黑客&#xff09;一览无余&#xff08;数据泄漏&#xf…

什么是nginx 、安装nginx、nginx调优

一、 什么是nginx 1.1 nginx的概念 一款高新能、轻量级Web服务软件系统资源消耗低对HTTP并发连接的处理能力高单台物理服务器可支持30 000&#xff5e;50 000个并发请求。 1.2 nginx模块与作用 核心模块&#xff1a;是 Nginx 服务器正常运行必不可少的模块&#xff0c;提供错…

配置MMDetection的solov2攻略整理

目录 一、MMDetection 特性 常见用法 二、ubuntu20.04配置solov2 三、Windows11配置solov2 一、MMDetection MMDetection是一个用于目标检测的开源框架&#xff0c;由OpenMMLab开发和维护。它提供了丰富的预训练模型和模块&#xff0c;可以用于各种目标检测任务&#xff…

ChatGPT在数据处理中的应用

ChatGPT在数据处理中的应用 今天的这篇文章&#xff0c;让我不断体会AI的强大&#xff0c;愿人类社会在AI的助力下走向更加灿烂辉煌的明天。 扫描下面二维码注册 ​ 数据处理是贯穿整个数据分析过程的关键步骤&#xff0c;主要是对数据进行各种操作&#xff0c;以达到最终的…

亿道丨三防平板丨如何从多方面选择合适的三防加固平板?

在如今这个信息爆炸的时代&#xff0c;移动设备已经成为我们生活和工作的必备工具。然而&#xff0c;在一些特殊的场合中&#xff0c;普通的平板电脑可能无法满足需求&#xff0c;比如工厂车间、野外作业、极端天气等环境下。此时&#xff0c;三防平板就成了不二之选。那么&…

福特锐界2021plus 汽车保养手册

福特锐界2021plus汽车保养手册两页&#xff0c;零部件保养要求&#xff0c;电子版放这里方便查询&#xff1a;

PYTHON-使用正则表达式进行模式匹配

目录 Python 正则表达式Finding Patterns of Text Without Regular ExpressionsFinding Patterns of Text with Regular ExpressionsCreating Regex ObjectsMatching Regex ObjectsReview of Regular Expression MatchingMore Pattern Matching with Regular ExpressionsGroupi…

【多线程】volatile 关键字、wait 和 notify方法详解

volatile 、wait 和 notify &#x1f332;volatile关键字&#x1f6a9;保证内存可见性&#x1f6a9;volatile 不保证原⼦性 &#x1f333;wait 和 notify方法&#x1f6a9;wait()&#x1f6a9;notify()&#x1f6a9;notifyAll()方法 ⭕wait 和 sleep 的对比&#xff08; 面试题…

B端系统:导航机制设计,用户体验提升的法宝

Hi&#xff0c;大家好&#xff0c;我是贝格前端工场&#xff0c;从事8年前端开发的老司机。很多B端系统体验不好很大一部分原因在于导航设计的不合理&#xff0c;让用户无所适从&#xff0c;大大降低了操作体验&#xff0c;本文着重分析B端系统的导航体系改如何设计&#xff0c…

ElasticSearch之零碎知识点

写在前面 本文记录es的零碎知识点&#xff0c;包括但不限于概念&#xff0c;集群方式&#xff0c;等。 1&#xff1a;词项查询 VS 全文查询 词项查询&#xff1a;查询的内容不做分词处理&#xff0c;输入的什么查询什么。 全文查询&#xff1a;查询的内容会做分词处理&…

Kubernetes基础(二十四)-Kubernetes删除控制原理

1 级联和非级联删除 k8s资源默认使用级联删除&#xff0c;当执行了删除一个Deployment的操作时&#xff0c;与其关联的ReplicaSet和Pod也会被删除。日常场景中可以指定删除操作为非级联删除&#xff0c;则之后保留下来的资源被称为孤儿对象。 参考&#xff1a;ReplicaSet是Pod…

【论文笔记之 YIN】YIN, a fundamental frequency estimator for speech and music

本文对 Alain de Cheveigne 等人于 2002 年在 The Journal of the Acoustical Society of America 上发表的论文进行简单地翻译。如有表述不当之处欢迎批评指正。欢迎任何形式的转载&#xff0c;但请务必注明出处。 论文链接&#xff1a;http://audition.ens.fr/adc/pdf/2002_…

Centos配置SSH并禁止密码登录

CentOS8 配置SSH使用密钥登录并禁止密码登录 一、概念 SSH 为 Secure Shell 的缩写,SSH 为建立在应用层基础上的安全协议。SSH 是较可靠&#xff0c;专为远程登录会话和其他网络服务提供安全性的协议。 SSH提供两个级别的认证&#xff1a; 基于口令的认证 基于密钥的认证 基本使…

YOLO系列论文阅读(v1--v3)

搞目标检测&#xff0c;绕不开的一个框架就是yolo&#xff0c;而且更糟糕的是&#xff0c;随着yolo的发展迭代&#xff0c;yolo网络可以做的事越来越多&#xff0c;语义分割&#xff0c;关键点检测&#xff0c;3D目标检测。。。这几天决定把YOLO系列彻底梳理一下&#xff0c;在…

深度学习 精选笔记(1)数据基本操作与线性代数

学习参考&#xff1a; 动手学深度学习2.0Deep-Learning-with-TensorFlow-bookpytorchlightning ①如有冒犯、请联系侵删。 ②已写完的笔记文章会不定时一直修订修改(删、改、增)&#xff0c;以达到集多方教程的精华于一文的目的。 ③非常推荐上面&#xff08;学习参考&#x…

2024牛客寒假算法基础集训营2

目录 A.Tokitsukaze and Bracelet B.Tokitsukaze and Cats C.Tokitsukaze and Min-Max XOR D.Tokitsukaze and Slash Draw E and F.Tokitsukaze and Eliminate (easy)(hard) G.Tokitsukaze and Power Battle (easy) 暂无 I.Tokitsukaze and Short Path (plus) J.Tokits…

“智能语音指令解析“ 基于NLP与语音识别的工单关键信息提取

“智能语音指令解析“ 基于NLP与语音识别的工单关键信息提取 1. 背景介绍1.1 场景痛点1.2 方案选型 2. 准备开发环境3. PaddleSpeech 语音识别快速使用4. PaddleNLP 信息抽取快速使用5. 语音工单信息抽取核心功能实现6. 语音工单信息抽取网页应用6.1 网页前端6.2 网页后端6.3 a…

前后端项目宝塔linux部署(springboot,vue,python)

宝塔linux安装就省略了&#xff0c;网上一堆 1.部署后端 1.首先把自己项目里面打包好的的jar包上传到服务器随便一个地方&#xff0c;我这里就上传到www/wwwroot下面了&#xff0c;宝塔的文件页面可以很便携上传 2.然后到下面这个页面 选那个java环境管理装个jdk&#xff…

vue ts html 中如何遍历 Enum 类型构建页面结构

vue ts html 中如何遍历 Enum 类型构建页面结构 一、需求 定义了一个 Enum 用来标记菜单类型&#xff1a; enum EnumMenuType {目录 1,菜单,按钮,外链 }你得 Enum 知道它的序号是随第一个定义的值自动增长的 现在想在 ElementUI 界面的 radio-group 中遍历它&#xff0c;…

SINAMICS V90 指导手册 第2章 SD卡 功能列表 技术数据 惯量比

微型SD卡 该卡可用于拷贝驱动参数或者执行固件升级&#xff0c;需要注意的是&#xff0c;200V系列的伺服驱动&#xff0c;可以选择Kingston或SanDisk生成的高品质SD卡&#xff1b;而对于400V系列驱动&#xff0c;建议使用西门子的SD卡&#xff0c;订货号&#xff1a;6SL3054-4…