tigramite教程(二)生物地球科学案例研究

文章目录

  • 数据生成与绘图
  • 因果发现分析
    • 平稳性假设、确定性、潜在混杂因素
    • 结构假设
    • 参数假设
  • 使用PCMCIplus的滑动窗口分析
  • 聚合因果图
  • 非参数因果效应估计
    • 假设的图形和调整集
    • 干预的真实情况
    • 假设的参数模型和因果效应的估计
    • 使用关于图的不同假设进行估计
  • 非因果估计

项目地址

这个文件夹中的两个案例研究来自气候科学和生物地球科学,遵循以下审查论文中的 QAD-问卷和方法选择流程图(包含在 tigramite github 教程文件夹中):

Runge, J., Gerhardus, A., Varando, G., Eyring, V. & Camps-Valls, G. Causal inference for time series. Nat. Rev. Earth Environ. 10, 2553 (2023).

该审查论文的末尾列出了一些用于解决选定 QAD 问题的软件和方法。

这个例子将演示使用基于因果推断的技术来调查空气温度(Tair)对生态系统呼吸(Reco)的因果效应,数据还包括总初级生产力(GPP)和短波辐射(Rg)。为了更好地说明非参数因果效应估计,这个案例研究考虑了一个具有已知定量基准真实性的合成系统:
在这里插入图片描述
在这些方程中,被解释为一个结构因果模型(SCM),其中 η t ˙ \eta _{\dot{t }} ηt˙
是相互独立的标准正态噪声项,除了Tair,其中 η t ˙ T a i r = η t + 1 4 ∗ ϵ t 3 \eta _{\dot{t }}^{Tair}=\eta_t+\frac{1}{4}*{\epsilon}_t^3 ηt˙Tair=ηt+41ϵt3
(标准正态噪声项和)具有立方指数,以表示更极端的温度。SCM展示了Reco和Tair之间的单峰关系(请参见下图中的干预基准真相),这在真实数据中也被发现(请参见论文)。

分析将首先说明因果发现,然后进行因果效应估计。让我们从导入一些标准Python包以及tigramite因果推断包开始。

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransformsimport sys
from copy import deepcopyimport sklearn
from sklearn.linear_model import LinearRegression
from sklearn.neural_network import MLPRegressor
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
from scipy.stats import gaussian_kde
import warnings
from sklearn.exceptions import DataConversionWarning
warnings.filterwarnings(action='ignore')import tigramite
import tigramite.data_processing as pp
import tigramite.plotting as tpfrom tigramite.models import LinearMediation, Models
from tigramite.causal_effects import CausalEffectsfrom tigramite.pcmci import PCMCI
from tigramite.independence_tests.robust_parcorr import RobustParCorr

数据生成与绘图

步骤紧密遵循QAD模板(综述论文中的表1和图2流程图)。与气候示例不同,这里所有变量(节点)都已定义为每日连续值的时间序列。下一个问题是关于创建一个平稳数据集(图2流程图)。与气候示例不同,这里考虑了多个数据集(多个站点)的设置。在考虑的合成示例中,由于站点只是同一SCM的不同实现,因此平稳性是通过构造满足的(除了所有站点共享的季节性),因此,不同站点的时间序列可以简单地汇总(合并)。为了减轻季节性非平稳性,只考虑4月至9月(模型月份)的时期(见下图)。

# Time series length is 6 years
T = 365*6 + 1# 4 Variables
N = 4# We model 5 measurement sites
M = 5data_dict = {}
mask_dict = {}
for site in range(M):modeldata_mask = np.ones((T, N), dtype='int')for t in range(T):# April to Septemberif 90 <= t % 365 <= 273:modeldata_mask[t,:] = 0mask_dict[site] = modeldata_maskmodeldata = np.zeros((T,N))random_state = np.random.RandomState(site)noise = random_state.randn(T, N)noise[:, 1] += 0.25*random_state.randn(T)**3for t in range(1, T):modeldata[t,0] = np.abs(280.*np.abs(np.sin((t)*np.pi/365.))**2 + 50.*np.abs(np.sin(t*np.pi/365.))*noise[t,0])modeldata[t,1] = 0.8*modeldata[t-1,1] + 0.02*modeldata[t,0] + 5*noise[t,1]  modeldata[t,2] = np.abs(0.2* modeldata[t-1, 2] + 0.002*modeldata[t,0] * modeldata[t,1] + 3*noise[t,2]) modeldata[t,3] = np.abs(0.3*modeldata[t-1,3] + 0.9*modeldata[t,2] * 0.8**(0.12*(modeldata[t,1]-15)) + 2*noise[t,3])data_dict[site] = modeldata# Variable names
var_names = ['Rg', 'Tair', 'GPP', 'Reco']# Init Tigramite dataframe object
dataframe = pp.DataFrame(data=data_dict, mask = mask_dict,analysis_mode = 'multiple',var_names=var_names)
fig_axes = tp.plot_timeseries(dataframe,grey_masked_samples='data',adjust_plot=False,color = 'red',alpha=0.6, data_linewidth=0.3,selected_dataset=0)for index in range(1, len(data_dict)):adjust_plot = Falseif index == M - 1: adjust_plot = Truecolor = ['red', 'green', 'blue', 'yellow', 'lightblue'][index]tp.plot_timeseries(dataframe,fig_axes =fig_axes,grey_masked_samples='data',adjust_plot=adjust_plot,color=color,time_label='day',alpha=0.6, data_linewidth=0.3,selected_dataset=index)
plt.show()

在这里插入图片描述

因果发现分析

在得到这个平稳的数据集后,第一个因果问题涉及因果发现。为了选择合适的因果发现方法,必须确定可以合理做出的假设。

平稳性假设、确定性、潜在混杂因素

这里的数据来自多个数据集(因果发现框架中的蓝色框,论文中的图2),然而,这些数据集共享相同的基础分布,下一个问题是这个系统是否是确定性的。考虑到在这个规模下的动态复杂性,可以假设它是一个非确定性系统。下一个假设是是否有潜在的混杂因素,即因果影响两个或更多观察变量的未观察变量。在这里,由于限制分析仅限于季节,在此期间可以预期平稳性,因此合理地假设不存在隐藏的混杂因素,这在基础SCM中是正确的。

结构假设

接下来需要做出图类型的结构假设。由于这里的进程很快,同时因果效应(即,在数据的时间分辨率1天以下的因果影响)可能会发生。此外,在这里,可以通过在图中不允许Rg有任何父母节点来强制实施Rg是外生变量的领域知识。这些假设建议使用基于约束的因果发现算法PCMCI+(或其他类似选项,见图2)。
为了对PCMCI+估计的因果时间序列图中最大时间滞后做出假设(即 X t − τ j → X t j X_{t-\tau}^j \to X^j_t XtτjXtj,所有 τ \tau τ such that 在图中的最大),可以使用数据来调查滞后依赖函数,或者,像在这里一样,可以使用领域知识来证明 τ m a x = 1 \tau_{max}=1 τmax=1(以天为单位)。

参数假设

接下来,为PCMCI+选择下一个超参数是关于条件独立性的测试,这需要一个参数假设。下面我们使用Tigramite的plot_densities函数来通过联合和边际密度估计调查依赖关系的类型。在这里,我们描绘了原始数据以及实现正态分布边际的转换数据。

dataframe_here = deepcopy(dataframe)
matrix_lags = None
matrix = tp.setup_density_matrix(N=N, var_names=dataframe.var_names, **{

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/264690.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

目标检测-Transformer-ViT和DETR

文章目录 前言一、ViT应用和结论结构及创新点 二、DETR应用和结论结构及创新点 总结 前言 随着Transformer爆火以来&#xff0c;NLP领域迎来了大模型时代&#xff0c;成为AI目前最先进和火爆的领域&#xff0c;介于Transformer的先进性&#xff0c;基于Transformer架构的CV模型…

FL Studio20.8.3.2304 中文破解版功能更新(附2024最新图文激活教程)

FL Studio20.8中文开心版下载 (有能力的话还是建议支持正版) 绝对能用&#xff0c;我现在就在用着 版本是FL Studio 20.8.3.230420.8.3.2304 Image-Line公司成立20周年而发布的一个版本&#xff0c;FL Studio中文开心版是目前互联网上最优秀的完整的软件音乐制作环境或数字…

SpringBoot使用classfinal-maven-plugin插件加密Jar包

jar包加密 1、在启动类的pom.xml中加入classfinal-maven-plugin插件 <build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId></plugin><plugin><…

from tensorflow.keras.layers import Dense,Flatten,Input报错无法引用

from tensorflow.keras.layers import Dense,Flatten,Input 打印一下路径&#xff1a; import tensorflow as tf import keras print(tf.__path__) print(keras.__path__) [E:\\开发工具\\pythonProject\\studyLL\\venv\\lib\\site-packages\\keras\\api\\_v2, E:\\开发工具\\…

小程序应用、页面、组件生命周期

引言 微信小程序生命周期是指在小程序运行过程中&#xff0c;不同阶段触发的一系列事件和函数。这一概念对于理解小程序的整体架构和开发流程非常重要。本文将介绍小程序生命周期的概念以及在不同阶段触发的关键事件&#xff0c;帮助开发者更好地理解和利用小程序的生命周期。 …

Docker基础(一)

文章目录 1. 基础概念2. 安装docker3. docker常用命令3.1 帮助命令3.2 镜像命令3.3 容器命令3.4 其他命令 4. 使用案例 1. 基础概念 镜像&#xff08;Image&#xff09;&#xff1a;Docker 镜像&#xff08;Image&#xff09;&#xff0c;就相当于是一个 root 文件系统。比如官…

ShardingSphere 5.x 系列【15】分布式主键生成器

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 3.1.0 本系列ShardingSphere 版本 5.4.0 源码地址:https://gitee.com/pearl-organization/study-sharding-sphere-demo 文章目录 1. 概述2. 配置3. 内置算法3.1 UUID3.2 Snowflake3.3 NanoId3.4 CosId3.5 Co…

深度学习目标检测】二十、基于深度学习的雾天行人车辆检测系统-含数据集、GUI和源码(python,yolov8)

雾天车辆行人检测在多种场景中扮演着至关重要的角色。以下是其作用的几个主要方面&#xff1a; 安全性提升&#xff1a;雾天能见度低&#xff0c;视线受阻&#xff0c;这使得驾驶者和行人在道路上的感知能力大大降低。通过车辆行人检测技术&#xff0c;可以在雾天条件下及时发现…

等保测评与商用密码共铸工控安全“双评合规”新篇章

最近听说了一个段子&#xff1a;“网络安全就像美女的内衣&#xff0c;等保和密评就是最贴身的内衣两件套&#xff0c;上下身一件都不能少。否则你的魔鬼身材&#xff08;核心数据&#xff09;就有可能被色狼&#xff08;黑客&#xff09;一览无余&#xff08;数据泄漏&#xf…

什么是nginx 、安装nginx、nginx调优

一、 什么是nginx 1.1 nginx的概念 一款高新能、轻量级Web服务软件系统资源消耗低对HTTP并发连接的处理能力高单台物理服务器可支持30 000&#xff5e;50 000个并发请求。 1.2 nginx模块与作用 核心模块&#xff1a;是 Nginx 服务器正常运行必不可少的模块&#xff0c;提供错…

配置MMDetection的solov2攻略整理

目录 一、MMDetection 特性 常见用法 二、ubuntu20.04配置solov2 三、Windows11配置solov2 一、MMDetection MMDetection是一个用于目标检测的开源框架&#xff0c;由OpenMMLab开发和维护。它提供了丰富的预训练模型和模块&#xff0c;可以用于各种目标检测任务&#xff…

ChatGPT在数据处理中的应用

ChatGPT在数据处理中的应用 今天的这篇文章&#xff0c;让我不断体会AI的强大&#xff0c;愿人类社会在AI的助力下走向更加灿烂辉煌的明天。 扫描下面二维码注册 ​ 数据处理是贯穿整个数据分析过程的关键步骤&#xff0c;主要是对数据进行各种操作&#xff0c;以达到最终的…

亿道丨三防平板丨如何从多方面选择合适的三防加固平板?

在如今这个信息爆炸的时代&#xff0c;移动设备已经成为我们生活和工作的必备工具。然而&#xff0c;在一些特殊的场合中&#xff0c;普通的平板电脑可能无法满足需求&#xff0c;比如工厂车间、野外作业、极端天气等环境下。此时&#xff0c;三防平板就成了不二之选。那么&…

福特锐界2021plus 汽车保养手册

福特锐界2021plus汽车保养手册两页&#xff0c;零部件保养要求&#xff0c;电子版放这里方便查询&#xff1a;

PYTHON-使用正则表达式进行模式匹配

目录 Python 正则表达式Finding Patterns of Text Without Regular ExpressionsFinding Patterns of Text with Regular ExpressionsCreating Regex ObjectsMatching Regex ObjectsReview of Regular Expression MatchingMore Pattern Matching with Regular ExpressionsGroupi…

【多线程】volatile 关键字、wait 和 notify方法详解

volatile 、wait 和 notify &#x1f332;volatile关键字&#x1f6a9;保证内存可见性&#x1f6a9;volatile 不保证原⼦性 &#x1f333;wait 和 notify方法&#x1f6a9;wait()&#x1f6a9;notify()&#x1f6a9;notifyAll()方法 ⭕wait 和 sleep 的对比&#xff08; 面试题…

B端系统:导航机制设计,用户体验提升的法宝

Hi&#xff0c;大家好&#xff0c;我是贝格前端工场&#xff0c;从事8年前端开发的老司机。很多B端系统体验不好很大一部分原因在于导航设计的不合理&#xff0c;让用户无所适从&#xff0c;大大降低了操作体验&#xff0c;本文着重分析B端系统的导航体系改如何设计&#xff0c…

ElasticSearch之零碎知识点

写在前面 本文记录es的零碎知识点&#xff0c;包括但不限于概念&#xff0c;集群方式&#xff0c;等。 1&#xff1a;词项查询 VS 全文查询 词项查询&#xff1a;查询的内容不做分词处理&#xff0c;输入的什么查询什么。 全文查询&#xff1a;查询的内容会做分词处理&…

Kubernetes基础(二十四)-Kubernetes删除控制原理

1 级联和非级联删除 k8s资源默认使用级联删除&#xff0c;当执行了删除一个Deployment的操作时&#xff0c;与其关联的ReplicaSet和Pod也会被删除。日常场景中可以指定删除操作为非级联删除&#xff0c;则之后保留下来的资源被称为孤儿对象。 参考&#xff1a;ReplicaSet是Pod…

【论文笔记之 YIN】YIN, a fundamental frequency estimator for speech and music

本文对 Alain de Cheveigne 等人于 2002 年在 The Journal of the Acoustical Society of America 上发表的论文进行简单地翻译。如有表述不当之处欢迎批评指正。欢迎任何形式的转载&#xff0c;但请务必注明出处。 论文链接&#xff1a;http://audition.ens.fr/adc/pdf/2002_…