时隔一年的测评:gpt3.5发展到什么程度了?

名人说:一花独放不是春,百花齐放花满园。——《增广贤文》
作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊)

目录

      • 一、简要介绍
        • 1、chatgpt是什么?
        • 2、主要特点
        • 3、工作原理
        • 4、应用限制
        • 5、使用方法
      • 二、分类问题测试
        • 1、基础问答(5个)
        • 2、数学题解答(5个)
        • 3、逻辑推理(5个)
        • 4、创造性写作(3个)
        • 5、代码编写(3个)
        • 6、对话理解与情感交流(2个)
        • 7、翻译任务(1个)
        • 8、策略规划(1个)
      • 三、测试感受

★观前提示以下内容仅为测试内容,不代表未来新版本如何测试体验,只讲述体验,本篇文章不做对比。

在人工智能领域,OpenAI的GPT(Generative Pre-trained Transformer)系列模型已经成为了一个名扬四海的名称。ChatGPT-3.5,作为这一系列的一个里程碑,不仅在技术界引起了广泛的关注,也在普通用户中掀起了一股学习和探索的热潮,这就不禁引发了一系列思考:
在这里插入图片描述

一、简要介绍

1、chatgpt是什么?

在这里插入图片描述
ChatGPTOpenAI开发的大语言模型,属于GPT(Generative Pre-trained Transformer)系列的一部分。它通过深度学习技术和大量数据训练,能够理解和生成自然语言文本。ChatGPT可以应用于多种场景,包括但不限于客户服务、教育辅导、内容创作等。

2、主要特点
  • 理解和生成文本:ChatGPT能够根据输入的文本理解上下文,并生成连贯、相关的回答。
  • 多样化应用:它可以用于问答系统、文本摘要、文章写作、编程代码辅助、语言翻译等多个领域。
  • 自然语言处理:ChatGPT在自然语言处理(NLP)方面表现出色,能够处理复杂的语言特征,包括语法、句式结构等。
  • 持续学习:虽然ChatGPT在部署后的学习能力有限,OpenAI定期更新模型,以包含新的数据和改进算法,使其性能持续提升。
3、工作原理

ChatGPT的工作原理基于Transformer架构,这是一种深度学习模型,特别适用于处理序列化的数据,如文本。

模型通过“注意力机制”来理解文本中的每个词与其他词之间的关系,这使得ChatGPT能够生成连贯且相关性强的文本。

4、应用限制

尽管ChatGPT在多个领域表现出色,但它也有一些限制,例如:

  • 信息时效性:ChatGPT的知识是到训练数据截止日期为止的,对于之后发生的事件或信息可能不了解。
  • 误解与错误:尽管准确率较高,ChatGPT仍可能产生误解或错误信息,特别是在处理复杂问题或缺乏明确上下文时。
  • 创造性限制:虽然能够生成新颖的文本,但ChatGPT的创造性受到训练数据的限制,它的“创意”来自于已经存在的信息组合。
5、使用方法

官网注册使用即可:chatgpt官网

在这里插入图片描述

了解了以上内容之后,咱们一起去测试体验一下:

二、分类问题测试

测试采用多类问题提问,以检验其多方面的功能。

1、基础问答(5个)
  • Q1: 澳大利亚的首都是哪座城市?(✔)

在这里插入图片描述

  • Q2: 地球与太阳之间的距离是多少?(✔)
    在这里插入图片描述
  • Q3: 水的沸点是多少度?(✔)
    在这里插入图片描述
  • Q4: 比萨斜塔在哪个国家?(✔)
    在这里插入图片描述
  • Q5: 世界上最长的河流是哪一条?(✔)
    在这里插入图片描述

从回答来看,5个问题均正确✔,相比刚发布时gpt3.0出现常识性错误,正确率高了不少。

2、数学题解答(5个)
  • Q1:小明有12个苹果,他想平均分给他的3个朋友(12个苹果分给3个人),请问每个朋友可以得到几个苹果?(小学难度 ✔)
    在这里插入图片描述

  • Q2:已知直角三角形的一条直角边长为5cm,另一条直角边长为12cm,求斜边的长度。(初中难度 ✔)

在这里插入图片描述

  • Q3:若一个二次函数表达式为 f ( x ) = a x 2 + b x + c ( a ≠ 0 ) f(x) = ax^2 + bx + c (a≠0) f(x)=ax2+bx+c(a=0),已知f(1)=0,f(2)=3,且f(x)图像经过点(3,10),请求出a、b、c的具体值。(初中难度 ✔)
    在这里插入图片描述
    在这里插入图片描述
  • Q4:在平面直角坐标系中,曲线C的方程为 y = x 3 − 6 x 2 + 9 x + 10 y = x^3 - 6x^2 + 9x + 10 y=x36x2+9x+10,求曲线C过原点处的切线方程。(高中难度 ✔)
    在这里插入图片描述
    在这里插入图片描述

这题虽然解对了,其实用到了一些高等数学的知识,这里要注意,高中数学涉及的并没有那么广泛。

  • Q5:计算函数 f(x) = x^3 - 2x^2 + x 在 x = 2 处的导数。(大学基础难度 ✔)

在这里插入图片描述

3、逻辑推理(5个)
  • Q1: 如果所有猫都喜欢吃鱼,而Tom是一只猫,那么Tom会喜欢吃鱼吗?(✔)

在这里插入图片描述

  • Q2: 假设A>B且B>C,请问A是否一定大于C?(✔)
    在这里插入图片描述
  • Q3: 你有1000kg蘑菇,含水量是99%。现在晒几天,晒到含水量为98%,那需要晒掉多少水?(✖)

在这里插入图片描述

正确答案:500kg。1000kg蘑菇含水量99%,就是水重990kg,固体蘑菇10kg。降到含水量98%就是固体蘑菇只占2%,然后用10除以2%就能得出蘑菇重量是500kg。所以答案是晒干了500kg水。

  • Q4: 有一个没有刻度的长方形的塑料盒子,没有盖子,它的容积是1升。请问如果只能使用这个盒子称量依次,能够准确地量出多少升的水?(半✔半✖)

在这里插入图片描述

正确答案:如果只能使用这个盒子称量一次,能够正确地量出 0.5 升的水。也能量出 1/6 升,将长方形盒子倾斜,水位到达盒子的上一边及底下的边线即可。

  • Q5: 72、36、24、18、( )(✖)
    在这里插入图片描述

正确答案:14.4

4、创造性写作(3个)
  • Q1: 请续写一个故事开头:“在一个寒冷的冬夜,小镇图书馆的灯突然熄灭了……”
    在这里插入图片描述

写的有模有样,这一年进步了不少。

  • Q2: 编写一首关于秋天落叶的五言律诗。

在这里插入图片描述

押上了居然,就是意境表达的有些冗杂。

  • Q3: 写一个关于人工智能与人关系的短篇小说。
    在这里插入图片描述

现在小说的前后逻辑性也更连贯了,牛!

5、代码编写(3个)
  • Q1: 用Python编写一个函数,用于判断一个数是否为质数。
    在这里插入图片描述
    gpt所写代码如下:
def is_prime(number):if number <= 1:return Falseif number <= 3:return Trueif number % 2 == 0 or number % 3 == 0:return Falsei = 5while i * i <= number:if number % i == 0 or number % (i + 2) == 0:return Falsei += 6return True# 测试
print(is_prime(5))  # 输出: True
print(is_prime(10)) # 输出: False
print(is_prime(17)) # 输出: True

在这里插入图片描述

  • Q2: 用Python编写一个程序,检查一个字符串是否为回文(正读反读都一样的词)。
    在这里插入图片描述
    gpt所写代码如下:
def is_palindrome(s):# 去除字符串中的非字母字符并转换为小写s = ''.join(c.lower() for c in s if c.isalnum())# 检查字符串是否等于其反转return s == s[::-1]# 测试
print(is_palindrome("A man, a plan, a canal, Panama"))  # 输出: True
print(is_palindrome("racecar"))                        # 输出: True
print(is_palindrome("hello"))                          # 输出: False

在这里插入图片描述

测试了下,成功运行并得到正确反馈。

  • Q3: 用Python编写一个程序,实现二叉树的深度优先搜索(DFS),并返回所有节点的遍历顺序。
    在这里插入图片描述
class TreeNode:def __init__(self, value):self.value = valueself.left = Noneself.right = Nonedef dfs(root):if root is None:return []stack = [root]result = []while stack:node = stack.pop()result.append(node.value)if node.right:stack.append(node.right)if node.left:stack.append(node.left)return result# 测试
# 构造二叉树
root = TreeNode(1)
root.left = TreeNode(2)
root.right = TreeNode(3)
root.left.left = TreeNode(4)
root.left.right = TreeNode(5)
root.right.left = TreeNode(6)
root.right.right = TreeNode(7)print(dfs(root))  # 输出: [1, 2, 4, 5, 3, 6, 7]

在这里插入图片描述

6、对话理解与情感交流(2个)
  • Q1: 我今天心情不好,能给我讲个笑话吗?
    在这里插入图片描述

虽然挺冷的,但是我确实笑了。

  • Q2: 你能帮我分析一下最近压力大的原因,并提供缓解压力的方法吗?

在这里插入图片描述

给的方法还不错,现在语言逻辑相比一年前也更好了。

7、翻译任务(1个)
  • Q: 将这段文字翻译成英语:“张骞(Zhang Qian)是中国第一个伟大的探险家。他不畏艰险,克服重重困难,两次出使西域,开通了中国同西亚和欧洲的通商关系,将中国的丝和丝织品运往西亚和欧洲,开拓了历史上著名的“丝绸之路”。同时,他又将西域的风土人情、地理文化以及特有物种等介绍到中原,极大地开阔了人们的视野。
    正如历史学家所指出的那样,如果没有张骞出使西域,就不可能有丝绸之路的开辟,也就不会有汉朝同西域或欧洲的文化交流。”(六级翻译原题

在这里插入图片描述

  • Q: 再将这段英语翻译成中文

在这里插入图片描述

可以看出,文本翻译的效果还是不错的。

8、策略规划(1个)
  • Q: 假设你是某初创公司的CEO,公司在市场扩张过程中遇到了资金短缺问题,你将如何制定一份详尽的战略计划,既保证业务持续增长又能吸引新的投资者?
    在这里插入图片描述

这计划竟然有些合理?整体不错

本次测评就到这里,接下来总结一下感受。

三、测试感受

gpt3.5相比于一年前,能力明显地得到了提升,但是要想替代很多岗位目前还是很难的,我们要有危机感,但不能杞人忧天,提升自身能力才是重点。

放大了来说,GPT是自然语言处理领域的一个重要进展,通过模仿人类的对话方式,它在提供信息、协助文本创作等方面展现了巨大潜力。然而,gpt也有它的局限性,使用时要注意,以免造成不可挽回的损失。

关于测试暂时测试这些,很感谢你能看到这里,如有相关疑问,还请下方评论留言。
Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊)
如果对大家有帮助的话,希望大家能多多点赞+关注!这样我的动力会更足!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/265688.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python自动化UI测试之Selenium基础实操

1. Selenium简介 Selenium 是一个用于 Web 应用程序测试的工具。最初是为网站自动化测试而开发的&#xff0c;可以直接运行在浏览器上&#xff0c;支持的浏览器包括 IE&#xff08;7, 8, 9, 10, 11&#xff09;&#xff0c;Mozilla Firefox&#xff0c;Safari&#xff0c;Googl…

QEMU之内存虚拟化

内存虚拟化方案 最直观的方案&#xff0c;将QEMU进程的虚拟地址空间的一部分作为虚拟机的物理地址。但该方案有一个问题&#xff1a; 在物理机上&#xff0c;CPU对内存的访问在保护模式下是通过分段分页实现的&#xff0c;在该模式下&#xff0c;CPU访问时使用的是虚拟地址&am…

16. QML中的一些粒子特效

1.说明 在使用unity开发游戏时&#xff0c;都会涉及到一些特效的开发。实际上在QML中也提供了一些可以做特效的控件&#xff0c;称之为粒子系统。本篇博客主要记录一些使用粒子做特效的方式。 特效–火焰效果&#xff1a; 2. 案例汇总 2.1 案例1 效果展示&#xff1a; 粒子…

向日葵、Todesk、teamviewer等工具远程连接电脑时第三方应用显示白屏

问题描述&#xff1a;用向日葵远程等桌面时&#xff0c;当把显示器断电或者就没有显示器时或者笔记本盖子合住时&#xff0c;第三方软件显示白屏或显示不出来的问题。 原因&#xff1a;某些显卡在断开屏幕时自动降为低功耗模式。 解决 1、下载工具 https://www.amyuni.com/d…

LNMP 架构

环境准备&#xff1a;lnmp 需要安装 nginx mysql php 论坛/博客 软件 使用LNMP架构搭建 论坛 1. 关闭防火墙和和核心防护 systemctl disable --now firewalld setenforce 0 2. 编译安装 nginx 安装依赖包 yum -y install pcre-devel zlib-devel gcc gcc-c make 创建…

区块链智能合约开发

一.区块链的回顾 1.区块链 区块链实质上是一个去中心化、分布式的可进行交易的数据库或账本 特征: 去中心化&#xff1a;简单来说&#xff0c;在网络上一个或多个服务器瘫痪的情况下&#xff0c;应用或服务仍然能够持续地运行&#xff0c;这就是去中心化。服务和应用部署在…

一个注解实现频率控制

1.概述 抹茶项目是一个即时的IM通信项目&#xff0c;并且有着万人大群。但凡有几个人刷屏&#xff0c;那消息爆炸的场景&#xff0c;都不敢想象。如果我们需要对项目特定的接口进行频率控制&#xff0c;不仅是业务上的功能&#xff0c;同样也保护了项目的监控运行。而频控又是…

前端架构: 脚手架之多package项目管理和架构

多package项目管理 1 &#xff09;多package项目管理概述 通常来说&#xff0c;当一个项目变大了以后&#xff0c;我们就要对这个项目进行拆分在前端当中&#xff0c;对于项目进行拆分的方式&#xff0c;通常把它称之为javascript包管理需要使用一个工具叫做 npm (Node Packag…

我的Java美团求职之路,2022非科班生的Java面试之路

目录 进入Spring Boot世界 讲述Sping、Spring Boot 和Spring Cloud 之间的关系&#xff0c;还重点讲述了如何利用开发工具(如IDEA)来实现开发&#xff0c;如何通过API文档来寻找类对象方法&#xff0c;告诉我们在开发过程中如何学习、发现和解决问题 需要免费领取这份Alibaba…

5G双域快网

目录 一、业务场景 二、三类技术方案 2.1、专用DNN方案 2.2、ULCL方案&#xff1a;通用/专用DNNULCL分流 2.3、 多DNN方案-定制终端无感分流方案 漫游场景 一、业务场景 初期双域专网业务可划分为三类业务场景&#xff0c;学校、政务、文旅等行业均已提出公/专网融合访问需…

跳跃游戏Ⅱ

问题 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说&#xff0c;如果你在 nums[i] 处&#xff0c;你可以跳转到任意 nums[i j] 处: 0 < j < nums[i] i j < n 返回到达 nums[n - …

Stable-Diffusion ubuntu服务器部署,报错解决方法(小白教程)

Stable Diffusion是一个深度学习模型&#xff0c;专注于生成高质量的图像。它由CompVis团队与Stability AI合作开发&#xff0c;并在2022年公开发布。这个模型使用文本提示&#xff08;text prompts&#xff09;生成详细、逼真的图像&#xff0c;是目前人工智能图像生成领域的一…

金融行业专题|期货超融合架构转型与场景探索合集(2023版)

更新内容&#xff1a; 更新 SmartX 超融合在期货行业的覆盖范围、部署规模与应用场景。新增 CTP 主席系统实践与评测、容器云资源池等场景实践。更多超融合金融核心生产业务场景实践&#xff0c;欢迎下载阅读电子书《SmartX 金融核心生产业务场景探索文章合集》。 面对不断变…

CI/CD笔记.Gitlab系列.`gitlab-ci.yml`中的头部关键字

CI/CD笔记.Gitlab系列 gitlab-ci.yml中的头部关键字 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at: https://jclee95.blog.csdn.netEmail: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/qq_28550263/article/details/136342897HuaW…

cRIO9040中NI9871模块的测试

硬件准备 CompactRIO9040NI9871直流电源&#xff08;可调&#xff09;网线RJ50转DB9线鸣志STF03-R驱动器和步进电机 软件安装 参考&#xff1a;cRIO9040中NI9381模块的测试 此外&#xff0c;需安装NI-Serial 9870和9871扫描引擎支持 打开NI Measurement&#xff06;Automa…

基于Java SSM springboot+VUE+redis实现的前后端分类版网上商城项目

基于Java SSM springbootVUEredis实现的前后端分类版网上商城项目 博主介绍&#xff1a;多年java开发经验&#xff0c;专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《500套》 欢迎点赞 收藏 ⭐…

fastjson序列化MessageExt对象问题(1.2.78之前版本)

前言 无论是kafka&#xff0c;还是RocketMq&#xff0c;消费者方法参数中的MessageExt对象不能被 fastjson默认的方式序列化。 一、查看代码 Override public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,ConsumeConcurrentlyContext context) {t…

【MATLAB】SVMD_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 SVMD_MFE_SVM_LSTM神经网络时序预测算法结合了单变量分解&#xff08;SVMD&#xff09;、多尺度特征提取&#xff08;MFE&#xff09;、聚类后展开支持向量机&#xff08;SVM&#xff09;…

【Ansys Fluent Web 】全新用户界面支持访问大规模多GPU CFD仿真

基于Web的技术将释放云计算的强大功能&#xff0c;加速CFD仿真&#xff0c;从而减少对硬件资源的依赖。 主要亮点 ✔ 使用Ansys Fluent Web用户界面™&#xff08;UI&#xff09;&#xff0c;用户可通过任何设备与云端运行的仿真进行远程交互 ✔ 该界面通过利用多GPU和云计算功…

MIT-BEVFusion系列九--CUDA-BEVFusion部署4 c++解析pytorch导出的tensor数据

目录 创建流打印 engine 信息打印结果内部流程 启动计时功能加载变换矩阵并更新数据&#xff08;重要&#xff09;内部实现 该系列文章与qwe、Dorothea一同创作&#xff0c;喜欢的话不妨点个赞。 在create_core方法结束后&#xff0c;我们的视角回到了main.cpp中。继续来看接下…