pyspark分布式部署随机森林算法

前言

分布式算法的文章我早就想写了,但是一直比较忙,没有写,最近一个项目又用到了,就记录一下运用Spark部署机器学习分类算法-随机森林的记录过程,写了一个demo。

基于pyspark的随机森林算法预测客户

本次实验采用的数据集链接:https://pan.baidu.com/s/13blFf0VC3VcqRTMkniIPTA
提取码:DJNB

数据集说明
某运营商提供了不同用户3个月的使用信息,共34个特征,1个标签列,其中存在一定的重复值、缺失值与异常值。各个特征的说明如下:
MONTH_ID 月份
USER_ID 用户id
INNET_MONT 在网时长
IS_AGREE 是否合约有效客户
AGREE_EXP_DATE 合约计划到期时间
CREDIT_LEVEL 信用等级
VIP_LVL vip等级
ACCT_FEE 本月费用(元)
CALL_DURA 通话时长(秒)
NO_ROAM_LOCAL_CALL_DURA 本地通话时长(秒)
NO_ROAM_GN_LONG_CALL_DURA 国内长途通话时长(秒)
GN_ROAM_CALL_DURA 国内漫游通话时长(秒)
CDR_NUM 通话次数(次)
NO_ROAM_CDR_NUM 非漫游通话次数(次)
NO_ROAM_LOCAL_CDR_NUM 本地通话次数(次)
NO_ROAM_GN_LONG_CDR_NUM 国内长途通话次数(次)
GN_ROAM_CDR_NUM 国内漫游通话次数(次)
P2P_SMS_CNT_UP 短信发送数(条)
TOTAL_FLUX 上网流量(MB)
LOCAL_FLUX 本地非漫游上网流量(MB)
GN_ROAM_FLUX 国内漫游上网流量(MB)
CALL_DAYS 有通话天数
CALLING_DAYS 有主叫天数
CALLED_DAYS 有被叫天数
CALL_RING 语音呼叫圈
CALLING_RING 主叫呼叫圈
CALLED_RING 被叫呼叫圈
CUST_SEX 性别
CERT_AGE 年龄
CONSTELLATION_DESC 星座
MANU_NAME 手机品牌名称
MODEL_NAME 手机型号名称
OS_DESC 操作系统描述
TERM_TYPE 硬件系统类型(0=无法区分,4=4g,3=dg,2=2g)
IS_LOST 用户在3月中是否流失标记(1=是,0=否),1月和2月值为空(标签)

数据字段打印
在这里插入图片描述
将数据集放到hadoop的HDFS中,通过Saprk读取HDFS文件里面的CSV格式的数据集,通过hadoop命令上传本地数据集到HDFS:

hadoop fs -put ./USER_INFO_M.csv /data/test/USER_INFO_M.csv

查看HDFS中的数据集CSV文件:

hadoop fs -ls /data/test

在这里插入图片描述

Spark中搭建分布式随机森林模型

从上面的数据集可以看到,数据是一个二分类数据,IS_LOST就是需要预测的标签,所以只需要构建一个随机森林二分类模型就可以了。Spark中提供了用于机器学习算法的库MLlib,这个库里面包含了许多机器学习算法,监督学习和无监督学习算法都有,例如线性回归、随机森林、GBDT、K-means等等(没有sklearn中提供的算法多),但是和sklearn中的随机森林模型构建有区别的是spark中程序底层是基于RDD弹性分布式计算单元,所以基于RDD的DataFrame数据结构和python中的DataFrame结构不一样,写法就不一样,python程序写的随机森林算法是不能直接在Spark中运行的,我们需要按照Spark中的写法来实现随机森林模型的构建,直接看代码:

from pyspark.sql import SparkSession
from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml import Pipeline
from pyspark.sql.functions import col
import timestart_time = time.time()
# 创建SparkSession
spark = SparkSession.builder.appName("RandomForestExample").getOrCreate()# 读取数据集,数据集放在HDFS上
data = spark.read.csv("/data/test/USER_INFO_M.csv", header=True, inferSchema=True, encoding='gbk')
print('=====================================================')
data.show()
# 去除包含缺失值的行
data = data.na.drop(subset=["IS_LOST"])
# 选择特征列和标签列
data = data.select([col for col in data.columns if col not in ['MONTH_ID', 'USER_ID','CONSTELLATION_DESC','MANU_NAME','MODEL_NAME','OS_DESC']])
label_col = "IS_LOST"
feature_cols=['CONSTELLATION_DESC','MANU_NAME','MODEL_NAME','OS_DESC']data = data.fillna(-1)# 创建特征向量列
assembler = VectorAssembler(inputCols=[col for col in data.columns if col not in ["IS_LOST"]], outputCol="features")
data = assembler.transform(data)# 选择特征向量列和标签列
data = data.select("features", label_col)# 将数据集分为训练集和测试集
(trainingData, testData) = data.randomSplit([0.8, 0.2])# 创建随机森林分类器
rf = RandomForestClassifier(labelCol=label_col, featuresCol="features")# 训练模型
model = rf.fit(trainingData)# 在测试集上进行预测
predictions = model.transform(testData)# 评估模型
evaluator = MulticlassClassificationEvaluator(labelCol=label_col, predictionCol="prediction", metricName="accuracy")
accuracy = evaluator.evaluate(predictions)# 打印准确率
print("测试集准确率为: {:.2f}".format(accuracy))
end_time = time.time()
print("代码运行时间: {:.2f}".format(end_time - start_time))
# 关闭SparkSession
spark.stop()

上面是通过python代码构建的Spark中的随机森林模型,Spark支持scala、java、R和python语言,python最简洁,所以直接用pyspark进行程序实现。将上面的代码放到自己的路径下,然后通过spark-submit命令提交.py文件运行即可:

./spark-submit     --master yarn     --deploy-mode client    --num-executors 4    /data/rf/spark_m.py

提交:
在这里插入图片描述

拓展:Spark中还支持提交Python环境,而不需要每个spark分布式集群节点都安装适配的python环境,spark-submit命令可以支持将python解释器连同整个配置好了的环境都提交到集群上面然后下发给其他节点,命令如下:

./spark-submit \--master yarn \--deploy-mode client\--num-executors 4\--queue default \--verbose \--conf spark.pyspark.driver.python=/anaconda/bin/python \--conf spark.pyspark.python=/anaconda/bin/python \/test.py

其中spark.pyspark.python和spark.pyspark.driver.python两个参数就是配置提交机器的python环境的路径,还可以通过将python环境打包放到HDFS路径下,Spark直接读取HDFS中的python环境包。

模型运行结果

将数据集按照2-8分为测试集和训练集,在测试集上的预测准确率为97%,运行时间80s。
在这里插入图片描述
同时登录集群查看提交的Spark任务运行情况,访问http://localhost:8088/cluster查看如下:
在这里插入图片描述
可以看到,RandomForestExample任务就是我们创建的任务,运行完成了,成功!

写在最后

在大规模数据的情况下如果需要用机器学习算法,Spark是一个很好的选择,可以大大提升任务的运行速度,工业环境中效率往往是最需要的,Spark可以解决我们的分布式算法部署需求。

本人才疏学浅,如果有不对的地方请指证!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/267237.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端sql条件拼接js工具

因为项目原因&#xff0c;需要前端写sql&#xff0c;所以弄了一套sql条件拼接的js工具 ​ /*常量 LT : " < ", LE : " < ", GT : " > ", GE : " > ", NE : " ! ", EQ : " ", LIKE : " like &qu…

2024有哪些免费的mac苹果电脑深度清理工具?CleanMyMac X

苹果电脑用户们&#xff0c;你们是否经常感到你们的Mac变得不再像刚拆封时那样迅速、流畅&#xff1f;可能是时候对你的苹果电脑进行一次深度清理了。在这个时刻&#xff0c;拥有一些高效的深度清理工具就显得尤为重要。今天&#xff0c;我将介绍几款优秀的苹果电脑深度清理工具…

浅谈 Linux 孤儿进程和僵尸进程

文章目录 前言孤儿进程僵尸进程 前言 本文介绍 Linux 中的 孤儿进程 和 僵尸进程。 孤儿进程 在 Linux 中&#xff0c;就是父进程已经结束了&#xff0c;但是子进程还在运行&#xff0c;这个子进程就被称作 孤儿进程。 需要注意两点&#xff1a; 孤儿进程最终会进入孤儿院…

数据结构-带头双向循环链表

文章目录 一.头结点二.双链表1双链表的概念与结构2.与单链表相比 三.循环链表1.关于循环链表2.循环链表的优点 四.带头双向循环链表1.带头双向循环链表2.结构图3.实现 五.代码一览 一.头结点 在链表中设置头结点的作用是什么 标识链表:头结点是链表的特殊节点,它的存在能够明确…

springboot基于web的网上摄影工作室的开发与实现论文

网上摄影工作室 摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了网上摄影工作室的开发全过程。通过分析网上摄影工作室管理的不足&#xff0c;创建了一个计算机管理网上摄影工作室的方案。文章介绍了网上摄影工…

1.亿级积分数据分库分表:总体方案设计

项目背景 以一个积分系统为例&#xff0c;积分系统最核心的有积分账户表和积分明细表&#xff1a; 积分账户表&#xff1a;每个用户在一个品牌下有一个积分账户记录&#xff0c;记录了用户的积分余额&#xff0c;数据量在千万级积分明细表&#xff1a;用户每次积分发放、积分扣…

gitlab添加ssh公钥

一&#xff1a;生成公钥 桌面鼠标右击打开 Open Git Bash here (前提是安装了Git)&#xff1b; 2.输入命令 ssh-keygen -t rsa -C "123*****90qq.com"来生成新的密钥对,将其中的"123*****90qq.com"替换为你自己的电子邮件地址。 命令&#xff1a;ssh-keyg…

MWC 2024丨美格智能推出5G RedCap系列FWA解决方案,开启5G轻量化新天地

2月27日&#xff0c;在MWC 2024世界移动通信大会上&#xff0c;美格智能正式推出5G RedCap系列FWA解决方案。此系列解决方案具有低功耗、低成本等优势&#xff0c;可以显著降低5G应用复杂度&#xff0c;快速实现5G网络接入&#xff0c;提升FWA部署的经济效益。 RedCap技术带来了…

Linux之嫁衣神功

前言&#xff1a;此博客内容全部转载他人&#xff0c;无一原创&#xff0c;初衷转播优质内容 1 挂载的作用 扩展存储空间 将额外的存储设备连接到Linux系统中&#xff0c;扩展系统的存储容量。 实现数据共享 不同计算机之间可以共享文件和数据&#xff0c;实现更高效的协作…

强大!信息安全技术导图全汇总!共200多张(附下载)

从网络上搜集整理了200多张信息安全技术导图&#xff0c;文末有免费领取方式。 详细文件目录 APT 攻击/ APT 攻击.png APT攻防指南基本思路v1.0-SecQuan.png Red Teaming Mind Map.png Windows常见持久控制.png 发现与影响评估.jpg …

Unity的相机跟随和第三人称视角

Unity相机跟随和第三人称视角 介绍镜头视角跟随人物方向进行旋转的镜头视角固定球和人的镜头视角 思路跟随人物方向进行旋转的镜头视角固定球和人的镜头视角 镜头旋转代码人物移动的参考代码注意 介绍 最近足球项目的镜头在做改动&#xff0c;观察了一下实况足球的视角&#x…

html基本标签

<h1></h1> <p></p> h是标签从h1~h6&#xff0c;没用h7,h8 p是段落 <a href"https://www.educoder.net">Educoder平台</a> href可以指定链接进行跳转 <img src"https://www.educoder.net/attachments/download/2078…

跨境知识分享:什么是动态IP?和静态IP有什么区别?

对于我们跨境人来说&#xff0c;清楚地了解IP地址、代理IP等这些基础知识&#xff0c;并学会正确地使用IP地址对于保障店铺的安全性和稳定性至关重要&#xff0c;尤其是理解动态IP和静态IP之间的区别&#xff0c;以及如何利用这些知识来防止账号关联&#xff0c;对于每个电商卖…

深入理解分库、分表、分库分表

前言 分库分表&#xff0c;是企业里面比较常见的针对高并发、数据量大的场景下的一种技术优化方案&#xff0c;所谓"分库分表"&#xff0c;根本就不是一件事儿&#xff0c;而是三件事儿&#xff0c;他们要解决的问题也都不一样&#xff0c;这三个事儿分别是"只…

Nodejs 第四十二章(jwt)

什么是jwt? JWT&#xff08;JSON Web Token&#xff09;是一种开放的标准&#xff08;RFC 7519&#xff09;&#xff0c;用于在网络应用间传递信息的一种方式。它是一种基于JSON的安全令牌&#xff0c;用于在客户端和服务器之间传输信息。 https://jwt.io/ JWT由三部分组成&…

Qt 自定义长条进度条(类似播放器进度条)

1.运行界面 2.步骤 其实很简单。 2.1绘制底图圆角矩形 2.2绘制播放进度圆角矩形 参考&#xff1a;painter绘图 3.源码 #pragma once#include <QWidget> #include <QLabel> #include <QHBoxLayout> #include <QMouseEvent> #include <QDebug&g…

探索Redis 6.0的新特性

Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的内存中数据结构存储系统&#xff0c;通常被用作缓存、消息队列和实时数据处理等场景。它的简单性、高性能以及丰富的数据结构支持使其成为了众多开发者和企业的首选。在Redis 6.0版本中&#xff0c;引入了一…

NVMe开发——PCIe复位

简介 PCIe中有4种复位机制&#xff0c;早期的3种被称为传统复位(Conventional Reset)。传统复位中的前2种又称为基本复位(Fundamental Resets)&#xff0c;分别为冷复位(Cold Reset)&#xff0c;暖复位(Warm Reset)。第3种复位为热复位(Hot Reset)。第4种复位被称为功能级复位…

SQL面试题(2)

第一题 创建trade_orders表: create table `trade_orders`( `trade_id` varchar(255) NULL DEFAULT NULL, `uers_id` varchar(255), `trade_fee` int(20), `product_id` varchar(255), `time` varchar(255) )ENGINE = InnoDB CHARACTER SET = utf8mb4 COLLATE = utf8mb4_0900_…

【机器学习基础】层次聚类-BIRCH聚类

&#x1f680;个人主页&#xff1a;为梦而生~ 关注我一起学习吧&#xff01; &#x1f4a1;专栏&#xff1a;机器学习 欢迎订阅&#xff01;相对完整的机器学习基础教学&#xff01; ⭐特别提醒&#xff1a;针对机器学习&#xff0c;特别开始专栏&#xff1a;机器学习python实战…