半导体数据分析: 玩转WM-811K Wafermap 数据集(三) AI 机器学习

前面我们已经通过两篇文章,一起熟悉了WM-811K Wafermap 数据集,并对其中的一些数据进行了调用,生成了一些统计信息和图片。今天我们接着继续往前走。

半导体数据分析: 玩转WM-811K Wafermap 数据集(二) AI 机器学习_wm811k数据集-CSDN博客

半导体数据分析: 玩转WM-811K Wafermap 数据集(一) AI 机器学习_wafer dataset-CSDN博客

当我们在处理大规模的数据集的时候,很多人都会有一种束手无策的感觉,尤其是面对海量的数据和复杂的结构时,可能会感到无从下手。我的经验就是抽丝剥茧,一步步来。实际上,通过系统化的步骤和合理的策略,我们可以有效地应对这些挑战。

搞过数据分析的都知道,缺失值的检查是数据处理过程中不可忽视的一环。当我们浏览数据集时,可能会发现相当一部分数据由于缺失值而变得无用。这些缺失值可能源于数据采集过程中的误差、设备故障或其他原因。为了确保后续分析的准确性,我们需要识别并处理这些缺失值。

当然,明确分析目标也非常重要。例如,如果我们只对具有特定故障类型标签的晶圆感兴趣,那么可以删除那些没有故障类型标签的数据。这样做不仅能够减少数据集的规模,还能提高数据的质量,使分析结果更加聚焦和可靠。

下面我我们就将整个数据做一些初步的处理,我们先来处理失效形式和训练类型。

之前我们从数据集中取出过一些数据  显示如下:

其中有两项  trianTestLabel和failureType,分别代表了训练测试标签,和失效标签。

我们对这两项通过下面的代码来进行处理:

import pandas as pdmp_file = "/data_disk/public_lib/wm811k_wafer_map/in/LSWMD.pkl"
df = pd.read_pickle(mp_file)df['failureNum']=df.failureType
df['trainTestNum']=df.trianTestLabel
mapping_type={'Center':0,'Donut':1,'Edge-Loc':2,'Edge-Ring':3,'Loc':4,'Random':5,'Scratch':6,'Near-full':7,'none':8}
mapping_traintest={'Training':0,'Test':1}
df=df.replace({'failureNum':mapping_type, 'trainTestNum':mapping_traintest})
tol_wafers = df.shape[0]
tol_wafers

在上面的代码中,我们抽取了  trianTestLabel 和failureNum 两列,分别重新命名为两列failureNum和trainTestNum,并通过两个字典mapping_type 和mapping_traintest进行了映射。在df.shape[0]中 返回 df 数据框的行数,即数据集中的总晶圆数量。该值存储在变量 tol_wafers 中。

811457

总数的晶圆是811457张。

然后我们来统计一下,失效的形式:

df_withlabel = df[(df['failureNum']>=0) & (df['failureNum']<=8)]
df_withlabel =df_withlabel.reset_index()
df_withpattern = df[(df['failureNum']>=0) & (df['failureNum']<=7)]
df_withpattern = df_withpattern.reset_index()
df_nonpattern = df[(df['failureNum']==8)]
df_withlabel.shape[0], df_withpattern.shape[0], df_nonpattern.shape[0]

上面的代码列出了三种标签 全部标签(0-8),有标记的标签(0-7),和 无标记的标签(8)。

并且每次取出标签的时候,都进行了重新索引:reset_index()。 这里对这个重新索引稍微解释一下:

重置索引通常是数据处理中的一个重要步骤,特别是在筛选数据或进行某些操作后。下面是重置索引的几个常见原因:

1. 确保索引连续

当你对 DataFrame 进行筛选或过滤后,原始数据的索引可能会变得不连续。例如,假设你从一个 DataFrame 中删除了一些行,结果就是剩余的行的索引会留下“空隙”。重置索引可以让你重新生成连续的索引,通常是从 0 开始递增的整数。

2. 方便后续操作

使用连续的整数索引使得后续的操作更简单。例如,在进一步分析或可视化数据时,连续的索引能避免因为跳跃的索引导致的潜在错误。它还可以帮助在合并(merge)或连接(concat)时避免索引冲突。

3. 删除旧的索引列

在使用 reset_index() 时,如果你不指定参数,原来的索引会被添加为一个新列。例如,如果你过滤掉了 DataFrame 的一些行,原索引列可能仍然包含那些被删除行的索引。重置索引不仅让索引连续,而且会去掉原始的索引列(除非你选择保留它)。

4. 避免潜在的错误

如果后续的操作需要基于索引进行一些处理(比如索引与行数的关联),不连续的索引可能会导致逻辑错误或不一致。重置索引确保了数据的索引一致性,减少了潜在的错误发生。

5. 保持代码整洁

有时,重置索引是为了保证代码简洁和易于阅读。尤其是当数据已经过多次筛选、过滤、分组等操作后,重新整洁的索引可以让分析过程更加清晰,避免在后续处理中迷失。

6. 去除层次索引(如果有)

如果在处理过程中曾经使用过多级索引(MultiIndex),可以通过 reset_index() 来降级到简单的单级索引,使得数据的访问和管理更为直观。

pandas 中,重新索引(reset index) 的主要目的是为数据框的索引(下标)重新分配连续的整数值,同时可以选择是否保留旧索引作为新列。

上面代码的最终运行结果是:

(172950, 25519, 147431)

这意味着172950片晶圆有标签,其中25519片晶圆被标记了失效形式,147431片晶圆没有标记失效形式。这个统计数据对我们后面用ai进行数据分析有参考作用。

然后我们来做一个统计图:

#创建图形和子图:
fig = plt.figure(figsize=(20, 4.5)) 
gs = gridspec.GridSpec(1, 2, width_ratios=[1, 2.5]) 
ax1 = plt.subplot(gs[0])
ax2 = plt.subplot(gs[1])#饼图:展示晶圆的标签分类
no_wafers = [tol_wafers - df_withlabel.shape[0], df_withpattern.shape[0], df_nonpattern.shape[0]]colors = ['silver', 'orange', 'gold']
explode = (0.1, 0, 0) 
labels = ['no-label', 'label&pattern', 'label&non-pattern']
ax1.pie(no_wafers, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=140)#条形图:显示不同故障类型的分布
uni_pattern = np.unique(df_withpattern.failureNum, return_counts=True)
labels2 = ['', 'Center', 'Donut', 'Edge-Loc', 'Edge-Ring', 'Loc', 'Random', 'Scratch', 'Near-full']ax2.bar(uni_pattern[0], uni_pattern[1] / df_withpattern.shape[0], color='gold', align='center', alpha=0.9)
ax2.set_title("Failure Type Frequency")
ax2.set_ylabel("% of Pattern Wafers")plt.show()

 运行结果如下:

根据failureType变量过滤,172950片晶圆有标签,而78.7%的晶圆没有标签。在贴有标签的晶圆片中,只有3.1%(25,519片)的晶圆片存在真正的失效模式,而147,431片晶圆片仍贴有“无”标签。因此,我们只关注这25,519个实例,这大大减少了我们工作的计算量。从上面的第二张图中,数据集显示出,失效形式呈现出了高度的不平衡分布。

图片展示数据是一种最佳数据展示的方式之一,因此观察原始数据的最好方法是进行数据可视化。接下来我们用数据集中标记的模式显示前100个样本。 

fig, ax = plt.subplots(nrows = 10, ncols = 10, figsize=(20, 20))
ax = ax.ravel(order='C')
for i in range(100):img = df_withpattern.waferMap[i]ax[i].imshow(img)ax[i].set_title(df_withpattern.failureType[i][0][0], fontsize=10)ax[i].set_xlabel(df_withpattern.index[i], fontsize=8)ax[i].set_xticks([])ax[i].set_yticks([])
plt.tight_layout()
plt.show() 

 

我们同样也可以通过失效形式分别来绘制晶圆图:

x = [0,1,2,3,4,5,6,7]
labels2 = ['Center','Donut','Edge-Loc','Edge-Ring','Loc','Random','Scratch','Near-full']for k in x:fig, ax = plt.subplots(nrows = 1, ncols = 10, figsize=(18, 12))ax = ax.ravel(order='C')for j in [k]:img = df_withpattern.waferMap[df_withpattern.failureType==labels2[j]]for i in range(10):ax[i].imshow(img[img.index[i]])ax[i].set_title(df_withpattern.failureType[img.index[i]][0][0], fontsize=10)ax[i].set_xlabel(df_withpattern.index[img.index[i]], fontsize=10)ax[i].set_xticks([])ax[i].set_yticks([])plt.tight_layout()plt.show() 

然后我们从上面选取几种来进行放大可视:

根据上面的编号选取: [12,340, 8, 14, 13, 66, 15, 189] 
x = [12, 340, 8, 14, 13, 66, 15, 189]
labels2 = ['Center','Donut','Edge-Loc','Edge-Ring','Loc','Random','Scratch','Near-full']#ind_def = {'Center': 9, 'Donut': 340, 'Edge-Loc': 3, 'Edge-Ring': 16, 'Loc': 0, 'Random': 25,  'Scratch': 84, 'Near-full': 37}
fig, ax = plt.subplots(nrows = 2, ncols = 4, figsize=(20, 10))
ax = ax.ravel(order='C')
for i in range(8):img = df_withpattern.waferMap[x[i]]ax[i].imshow(img)ax[i].set_title(df_withpattern.failureType[x[i]][0][0],fontsize=24)ax[i].set_xticks([])ax[i].set_yticks([])
plt.tight_layout()
plt.show() 

 经过上面的可视化,我们进一步加深了对这个数据集的了解,后面我们将对数据进行转换:通过使用缩放、属性分解和属性聚合的工程特征,转换为机器学习准备的预处理数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/2673.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ClickHouse-CPU、内存参数设置

常见配置 1. CPU资源 1、clickhouse服务端的配置在config.xml文件中 config.xml文件是服务端的配置&#xff0c;在config.xml文件中指向users.xml文件&#xff0c;相关的配置信息实际是在users.xml文件中的。大部分的配置信息在users.xml文件中&#xff0c;如果在users.xml文…

Elasticsearch:Jira 连接器教程第一部分

作者&#xff1a;来自 Elastic Gustavo Llermaly 将我们的 Jira 内容索引到 Elaasticsearch 中以创建统一的数据源并使用文档级别安全性进行搜索。 在本文中&#xff0c;我们将回顾 Elastic Jira 原生连接器的一个用例。我们将使用一个模拟项目&#xff0c;其中一家银行正在开发…

Linux自学指南(学习路线大纲)

Linux入门与进阶指南 目录 第一部分 入门篇 第一章 Linux 系统 1.1 Unix&#xff1a;Linux的“祖师爷” 1.2 Linux 操作系统的诞生与发展历程 1.3 Linux 主要应用领域的归纳 1.4 开源社区的兴起 第二章 如何选择Linux发行版&#xff1f; 2.1 Debian GNU/Linux 2.2 Ubu…

CCLINKIE转ModbusTCP网关,助机器人“掀起”工业智能的“惊涛骇浪”

以下是一个稳联技术CCLINKIE转ModbusTCP网关&#xff08;WL-CCL-MTCP&#xff09;连接三菱PLC与机器人的配置案例&#xff1a;设备与软件准备设备&#xff1a;稳联技术WL-CCL-MTCP网关、三菱FX5UPLC、支持ModbusTCP协议的机器人、网线等。 稳联技术ModbusTCP转CCLINKIE网关&…

c#删除文件和目录到回收站

之前在c上遇到过这个问题&#xff0c;折腾许久才解决了&#xff0c;这次在c#上再次遇到这个问题&#xff0c;不过似乎容易了一些&#xff0c;亲测代码如下&#xff0c;两种删除方式都写在代码中了。 直接上完整代码&#xff1a; using Microsoft.VisualBasic.FileIO; using Sy…

windows远程桌面连接限定ip

1&#xff0c;Windows防火墙->高级设置->远程桌面 - 用户模式(TCP-In)->作用域->远程IP地址 2&#xff0c;启用规则

Linux 下配置 Golang 环境

go sdk 下载环境&#xff1a;https://golang.google.cn/dl/选择对应的版本&#xff1a; 使用 wget 直接拉包下载到服务器中 wget https://golang.google.cn/dl/go1.23.4.linux-amd64.tar.gz如果找不到 wget 命令&#xff0c;yum 下载 wget yum -y install wget配置 go 的环境…

打造更安全的Linux系统:玩转PAM配置文件

在Linux系统中&#xff0c;用户认证是确保系统安全的关键步骤。PAM&#xff08;可插拔认证模块&#xff09;为我们提供了一个非常灵活的框架&#xff0c;帮助我们管理各种服务的认证过程。其中&#xff0c;/etc/pam.d目录是PAM配置的核心部分&#xff0c;这里存放了每个服务所需…

LLM - 大模型 ScallingLaws 的 Causal/Masked (PLM) 目标系数差异 教程(2)

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/145188660 免责声明&#xff1a;本文来源于个人知识与公开资料&#xff0c;仅用于学术交流&#xff0c;欢迎讨论&#xff0c;不支持转载。 Scalin…

【docker踩坑记录】

docker踩坑记录 踩坑记录(持续更新中.......)docker images 权限问题 踩坑记录(持续更新中…) docker images 权限问题 permission denied while trying to connect to the Docker daemon socket at unix:///var/run/docker.sock: Head "http://%2Fvar%2Frun%2Fdocker.s…

本地部署Web-Check网站检测与分析利器并实现远程访问实时监测

文章目录 前言1.关于Web-Check2.功能特点3.安装Docker4.创建并启动Web-Check容器5.本地访问测试6.公网远程访问本地Web-Check7.内网穿透工具安装8.创建远程连接公网地址9.使用固定公网地址远程访问 前言 本文我们将详细介绍如何在Ubuntu系统上使用Docker部署Web-Check&#xf…

森林网络部署,工业4G路由器实现林区组网远程监控

在广袤无垠的林区&#xff0c;每一片树叶的摇曳、每一丝空气的流动&#xff0c;都关乎着生态的平衡与安宁。林区监控正以强大的力量&#xff0c;为这片绿色家园筑起一道坚固的防线。 工业 4G 路由器作为林区监控组网的守护者&#xff0c;凭借着卓越的通讯性能&#xff0c;突破…

Django框架:python web开发

1.环境搭建&#xff1a; &#xff08;a&#xff09;开发环境&#xff1a;pycharm &#xff08;b&#xff09;虚拟环境&#xff08;可有可无&#xff0c;优点&#xff1a;使用虚拟环境可以把使用的包自动生成一个文件&#xff0c;其他人需要使用时可以直接选择导入包&#xff…

vmware虚拟机配置ubuntu 18.04(20.04)静态IP地址

VMware版本 &#xff1a;VMware Workstation 17 Pro ubuntu版本&#xff1a;ubuntu-18.04.4-desktop-amd64 主机环境 win11 1. 修改 VMware虚拟网络编辑器 打开vmware&#xff0c;点击顶部的“编辑"菜单&#xff0c;打开 ”虚拟化网络编辑器“ 。 选择更改设置&#…

【Unity】unity3D 调用LoadSceneAsync 场景切换后比较暗 部门材质丢失

解决方法&#xff1a;两个场景使用同样灯光 现象 直接进入第二个场景是可以正常显示 调用LoadSceneAsync来切换后&#xff0c;第二个场景出现比较暗的情况 解决方法&#xff1a;两个场景使用同样灯光&#xff0c;在loading 的场景中加入灯光。 Light—Directional Light 如果…

R5天气识别学习笔记

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 LSTM-天气识别预测 雨天百分比数据预处理模型训练结果可视化个人总结 import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyp…

SpringMVC (1)

目录 1. 什么是Spring Web MVC 1.1 MVC的定义 1.2 什么是Spring MVC 1.3 Spring Boot 1.3.1 创建一个Spring Boot项目 1.3.2 Spring Boot和Spring MVC之间的关系 2. 学习Spring MVC 2.1 SpringBoot 启动类 2.2 建立连接 1. 什么是Spring Web MVC 1.1 MVC的定义 MVC 是…

【混合开发】CefSharp+Vue 解决Cookie问题

问题表现 使用Element-admin架构搭建Vue前端项目&#xff0c;在与CefSharp搭配时&#xff0c;出现无法使用cookie的问题。 无法将token存入cookiecookie无法被读取 如下图&#xff0c;Cookies下显示file://。 正常的Cookies显示&#xff0c;Cookies显示为http://域名&#x…

jmeter事务控制器-勾选Generate Parent Sample

1、打开jmeter工具&#xff0c;添加线程组&#xff0c;添加逻辑控制器-事务控制器 2、在事务控制器&#xff0c;勾选Generate parent sample&#xff1a;生成父样本&#xff1b;说明勾选后&#xff0c;事务控制器会作为父节点&#xff0c;其下面的请求作为子节点 3、执行&#…

【Linux】进程间通信IPC

目录 进程间通信 IPC 1. 进程间通信方式 2. 无名管道 2.1 特点 2.2 函数接口 2.3 注意事项 3. 有名管道 3.1 特点 3.2 函数接口 3.3 注意事项 3.4 有名管道和无名管道的区别 4. 信号 4.1概念 4.2信号的响应方式 4.3 信号种类 4.4 函数接口 4.4.1 信号发送和挂…