《TCP/IP详解 卷一》第9章 广播和组播

目录

9.1 引言

9.2 广播

9.2.1 使用广播地址

9.2.2 发送广播数据报

9.3 组播

9.3.1 将组播IP地址转换为组播MAC地址

9.3.2 例子

9.3.3 发送组播数据报

9.3.4 接收组播数据报

9.3.5 主机地址过滤

9.4 IGMP协议和MLD协议

9.4.1 组成员的IGMP和MLD处理

9.4.2 组播路由器的IGMP和MLD处理

9.4.3 例子

9.4.4 轻量级 IGMPv3 和 MLDv2

9.4.5 IGMP和MLD健壮性

9.4.6 IGMP和MLD计数器和变量

9.4.7 IGMP和MLD Snooping

9.5 与IGMP和MLD相关的攻击

9.6 总结


多播组成员管理协议

        IPv4:IGMP:Internet Group Management Protocol,互联网组管理协议。

        IPv6:MLD:Multicast Listener Discovery,组播侦听发现协议。

9.1 引言

IP地址分类:

        unicast:单播。

        multicast:多播=组播。

        broadcast:广播,IPv6没有广播。

        anycast:任播。

任播:

        路由器将目的IP是任播地址的数据包发送到多个接收者中最近一个。

        使用场景:

                服务发现: 如IPv6主机通过发送HTTP的任播报文。来发现局域网可用Web服务器。

                负载均衡:一组相同功能的服务器共享同一个任播地址。客户端请求路由到最近服务器。

                路由器冗余:多个路由器共享同一个任播地址,实现冗余和容错性。

IPv6链路本地地址:

        前缀:fe80::,用于局域网内通信。

广播和组播为应用程序提供两种服务:

        交付数据至多个目的地

        请求/发现服务器。

一般只有UDP才利用广播和组播。

IPv4组播是可选的。

IPv6组播是强制性,因为邻居发现ND需使用。

9.2 广播

9.2.1 使用广播地址

组播MAC地址:

        第一个字节的最低位二进制为0代表单播地址,为1代表组播地址。

        如01:00:00:00:00:00,03:00:00:00:00:00

本地网络(有限广播)广播:255.255.255.255,用于向局域网所有设备发送数据。

子网定向广播地址:如192.168.1.255:用于向特定子网中所有设备发送通知、服务发现和配置信息等。

ping 广播IP地址+广播MAC地址作用:

        触发所有接收设备回包,获得所有设备的MAC地址。无需源主机单独向每个设备发送ARP。

        但是某些操作系统可能禁止ping广播IP地址。

组播地址只能作为目的IP,不能作为源IP。

9.2.2 发送广播数据报

socket选项:

        SO_BROADCAST:设置套接字允许发送广播数据包。

ping -b会设置SO_BROADCAST

9.3 组播

即多播,multicast。

1. 当主机希望加入一个多播组时,它向路由器发送IGMP Membership Report报文,其中包含感兴趣的组播地址,并可能包含可选的源列表。用于指定从哪些源接收组播数据。

2. 路由器收到IGMP报文后,更新其多播组成员表,并根据多播组成员表转发组播数据到感兴趣的主机。

多播组成员表和可选源列表都会定期更新或超时删除。

IGMP报文中的源列表分为:

        特定源组播(SSM):明确接收或不接收特定发送方的组播流量。

        任源组播(ASM):不考虑发送方身份。

9.3.1 将组播IP地址转换为组播MAC地址

组播数据应使用组播MAC地址作为目的MAC。

组播MAC地址结构:

        前24位: 前24位固定为01-00-5E。

        后23位: 等于IPv4组播IP地址的低23位。

IPv4组播的以太网地址范围:01:00:5E:00:00:00到01:00:5E:7F-FF-FF

组播IP地址转换为组播MAC地址:

IPv4组播地址范围:224.0.0.0到239.255.255.255,D类地址。

根据上图所示转换方法:

        组播地址 224.128.64.32(十六进制为 E0.80.40.20 )和 224.0.64.32(十六进制为 E0.00.40.20 )都被映射到01:00:5E:00:40:20

所以发往组播224.128.64.32的报文应使用源MAC 01:00:5E:80:40:20来封装。

IPv6组播IP地址转换为组播MAC:

        MAC前16位: 前缀固定是33-33

        MAC后32位: IPv6组播地址的最后32位。

        如组播地址ff02::1:2。转换为组播MAC地址:33-33-00-01-00-02。

9.3.2 例子

mDNS:组播DNS。

        一般工作在局域网内部。

        作用:

                共享DNS响应:多个主机共享DNS响应,减轻DNS服务器负担,避免太多主机DNS查询。

                设备互相发现:新设备发送mDNS查询来通告自己的存在。

                服务发现:通过mDNS查询来寻找局域网特定服务(打印机)。

224.0.0.251:mDNS组播组IP。

使用ICMP报文回复了ping 224.0.0.251的主机,表明加入了mDNS组。

9.3.3 发送组播数据报

多网口的主机须决定使用哪个IP地址和接口。

9.3.4 接收组播数据报

组播组的成员资格是动态的,它随进程加入或离开组而改变。

查看组播组成员方法:

        ip maddr show

        netstat -gn

# ip maddr show

1:         lo                 接口索引号和接口名称。

        inet 224.0.0.1         该接口加入的IPv4组播地址。

        inet6 ff02::1                 该接口加入的IPv6组播地址

        inet6 ff01::1

加入组播组方法:

        ip maddr add 224.0.0.1 dev eth0 eth0接口加入224.0.0.1组

        ip maddr add ff02::1 dev eth0

9.3.5 主机地址过滤

mreq.imr_multiaddr.s_addr = inet_addr("组播组地址");

mreq.imr_interface.s_addr = htonl(INADDR_ANY);

加入组播组:

        setsockopt(sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq)) ;

离开组播组:

        setsockopt(sockfd, IPPROTO_IP, IP_DROP_MEMBERSHIP, &mreq, sizeof(mreq));

9.4 IGMP协议和MLD协议

组播成员管理协议:

        IGMP:Internet Group Management Protocol,互联网组管理协议,IPv4使用。

        MLD:Multicast Listener Discovery,组播侦听发现协议,IPv6使用。

MLD和IGMP功能几乎相同,都用于管理组播组成员。

IGMP/MLD管理方法:

        主机向路由器发送组成员报告报文,路由器知道主机感兴趣组播组后,以便知道组播数据报转发到对应接口。

SSM,即源特定多播模式:

        接收方只能接收来自特定源的多播流量。

        目前广泛使用IGMPv3和MLDv2的支持SSM。

        当主机想要接收特定源的多播流时,会发送IGMPv3/MLDv2报文,其中包含指定源地址和多播组地址。

ASM:即任意源多播模式。

        接收方可以接收来自任意源的多播流量。

如上图,组成员管理的两种方式:

        路由器定期IGMP/MLD查询。

        主机主动IGMP/MLD报告。

IGMPv3报告发送到224.0.0.22,即IGMPv3组播路由器地址。

MLDv2报告发送到ff02::16,即MLDv2组播路由器地址。

和ICMP类似,IGMP报文也封装在IPv4。

IGMP报文的TTL固定为1,所以报文仅限于本地子网。

报文格式:

组播路由器也和广域组播协议(PIM-SM,BIDIR-PIM)交互,将流量转发给感兴趣主机,或禁止流量流向不感兴趣主机。

广域组播协议:

        在广域网(WAN)中实现组播。

        如:PIM,BIDIR-PIM。

PIM(Protocol Independent Multicast):即协议无关组播协议。

两种模式:

        PIM-DM(Dense Mode):适用于组播组成员密集的网络

        PIM-SM(Sparse Mode):适用于组播组成员分布稀疏的网络。

PIM使用场景:

        大型企业内部跨子网或分支机构的组播通信。如视频会议、流媒体。

        电信运营商广域网中组播通信,如电视直播、广播和IPTV等。

9.4.1 组成员的IGMP和MLD处理

作用:允许主机指明自己有兴趣的组,还可以指定允许/拒绝特定源发送的流量。

方法:向同子网的组播路由器发送报告。

IGMP报告报文如下:

类型字段:

        指示报文类型,可能的值有:

                0x11: Membership Query(成员查询)

                        路由器发送成员查询消息

                0x12: Membership Report(成员报告)

                        主机发送成员报告消息,表示主机加入多播组。

                0x13: Leave Group(离开组)

                        主机发送,表示主机离开组播组,路由器不在转发该组播组流量给该主机。

                0x22: IGMPv3 Membership Report(IGMPv3 成员报告)

                        IGMPv3的成员报告,用于支持源特定多播(SSM)和其他高级功能。

组记录:

        其中每个组记录格式如下:

上图字段解释:

        记录类型:

                INCLUDE:主机对指定的源地址感兴趣。

                EXCLUDE:主机对指定的源地址不感兴趣。

        IPv4组播地址:

                加入或离开的组播组。

        源地址:主机感兴趣、不感兴趣的源地址。

9.4.2 组播路由器的IGMP和MLD处理

组播路由器的工作内容:

        发送组成员查询。

        接收组成员报告,维护组播组成员。

        成员刷新与老化。

组播路由器有三种查询报文:

        通用查询:查询所有组播组。

        特定组查询:查询特定组播组的成员。

        特定组和源查询:用于组播路由器之间查询与响应。

通用查询报文目的IP:

        IPv4 IGMP中为224.0.0.1,代表所有组播节点。

        IPv6 MLD中为ff02::1,代表链路范围内所有组播节点。

特定组查询报文的目的IP:

        为查询的该特定组的组播IP。

9.4.3 例子

上图显示ICMPv6协议报文细节,其实就是MLD协议,MLD属于ICMPv6。

从上文可知,该报文是IPv6 MLD查询报文

        组播目的IP地址:组播地址ff02::1 (表示所有组播节点)

        组播目的MAC地址:33:33:00:00:00:01 (根据组播IP转换而来,固定前缀为33:33)

主机发送的IGMP报文TTL为1,不会通过路由器转发。

很多应用协议都通过发送报文到组播地址,或来查询服务或散播服务,实现局域网设备和服务发现。如:

        mDNS

        UPnP:用于智能家居设备发现。

        发现局域网是否有打印机。

9.4.4 轻量级 IGMPv3 和 MLDv2

9.4.5 IGMP和MLD健壮性

同一链路可运行多个组播路由器,故障备份,最小IP地址路由器被选为查询器。

查询器选举(querier election)

        比较源IP地址,IP小的路由器为查询器,非查询器进入备用模式。

查询组播路由器需要定期查询组播成员。

9.4.6 IGMP和MLD计数器和变量

IGMP和MLD需处理组播路由器的失效、协议报文丢失,早期协议版本的兼容性。

        大多基于状态改变和计时器来启用这些功能。

9.4.7 IGMP和MLD Snooping

IGMP ( MLD) snooping:

        2层交换机查看在第3层的信息,了解它对特定的组播流量流动是否有兴趣。

如果没有IGMP snooping,交换机会广播链路层流量。

而支持IGMP(MLD)snooping的交换机通过查看主机与路由器通信的IGMP信息,记录哪些端口需要哪些特定的组播流动,从而减少流量转发。

9.5 与IGMP和MLD相关的攻击

IGMP Flooding 攻击:发送大量IGMP或MLD报文,引起带宽耗尽。

IGMP欺骗:攻击者伪造IGMP报文,导致路由器维护错误组播组成员信息,最终路由器错误转发。

伪装成组播路由器,在IGMP查询报文中使用非常小的"最大响应时间",诱导主机频繁发送组播成员报告,消耗CPU。

9.6 总结

两种IPv4广播地址:

        受限(255.255.255.255)

        定向(如192.168.1.255)

IPv4组播MAC:前缀01:00:5e+组播IP地址的低23位。

IPv6组播MAC:16位前缀33:33+组播IP地址的低序32。

IGMP和MLD中鲁棒性变量:

        一个时间值。

        表示如果路由器在该时间内没有再收到成员报文,路由器将成员从组播组成员列表中移除。

如果没有鲁棒性变量,当网络抖动或不稳定性时。不好影响:

        路由器过早认定主机已离开组播组,过早将主机从成员列表中删除,导致主机无法接收到组播流量。

        过多组播成员状态变化和更新导致网络拥塞或不必要的流量。特别是大型网络中。

鲁棒性变量使用场景:不稳定网络。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/267588.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

继电器测试中需要注意的安全事项有哪些?

继电器广泛应用于电气控制系统中的开关元件,其主要功能是在输入信号的控制下实现输出电路的断开或闭合。在继电器测试过程中,为了确保测试的准确性和安全性,需要遵循一定的安全事项。以下是在进行继电器测试时需要注意的安全事项:…

汽车大灯尾灯划痕裂缝破洞破损掉角崩角等如何修复?根本没必要换车灯换总成,使用无痕修UV树脂胶液即可轻松搞定。

TADHE车灯无痕修复专用UV胶是一种经过处理的UV树脂胶,主要成份是改性丙烯酸UV树脂。应用在车灯的专业无痕修复领域。 车灯修复UV树脂有以下优点: 1. 快速修复:此UV树脂是一种用UV光照射在10秒内固化的材料。 2. 高强度:UV树脂固…

LabVIEW流量控制系统

LabVIEW流量控制系统 为响应水下航行体操纵舵翼环量控制技术的试验研究需求,通过LabVIEW开发了一套小量程流量控制系统。该系统能够满足特定流量控制范围及精度要求,展现了其在实验研究中的经济性、可靠性和实用性,具有良好的推广价值。 项…

抖音视频批量下载软件|视频评论采集工具

抖音视频评论采集软件是一款基于C#开发的高效、便捷的工具,旨在为用户提供全面的数据采集和分析服务。用户可以通过关键词搜索抓取视频数据,也可以通过分享链接进行单个视频的抓取和下载,从而轻松获取抖音视频评论数据。 批量视频提取模块&a…

数学建模函数插值与拟合

1.脑图 2.介绍 我们自己找到的函数,在已知点处的函数值和要求的函数在这些点处的函数值相等,这个函数 就叫做未知函数的插值函数; 多项式函数构成的插值函数的集合叫做函数类; 3.拉格朗日插值法 基函数的求法和插值函数的构造…

Java SPI机制详解

Java SPI机制详解 1. 定义接口2. 实现接口4. 创建配置文件5. 加载实现类6.Java SPI机制在MySQL中的使用 总结 SPI 全称为 (Service Provider Interface) ,是JDK内置的一种服务提供发现机制。SPI是一种动态替换发现的机制, 当我们有个接口,想在…

性别和年龄的视频实时监测项目

注意:本文引用自专业人工智能社区Venus AI 更多AI知识请参考原站 ([www.aideeplearning.cn]) 性别和年龄检测 Python 项目 首先介绍性别和年龄检测的高级Python项目中使用的专业术语 什么是计算机视觉? 计算机视觉是使计算机能…

golang学习5,glang的web的restful接口

1. //返回json r.GET("/getJson", controller.GetUserInfo) package mainimport (/*"net/http"*/"gin/src/main/controller""github.com/gin-gonic/gin" )func main() {r : gin.Default()r.GET("/get", func(ctx *…

【K8S类型系统】一文梳理 K8S 各类型概念之间的关系(GVK/GVR/Object/Schema/RestMapper)

参考 k8s 官方文档 https://kubernetes.io/zh-cn/docs/reference/https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.29/ 重点 Kubernetes源码学习-kubernetes基础数据结构 - 知乎 重点 Kubernetes类型系统 | 李乾坤的博客 重点 k8s源码学习-三大核心数…

Java学习--学生管理系统(残破版)

代码 Main.java import java.util.ArrayList; import java.util.Scanner;public class Main {public static void main(String[] args) {ArrayList<Student> list new ArrayList<>();loop:while (true) {System.out.println("-----欢迎来到阿宝院校学生管理系…

Stable Cascade-ComfyUI中文生图、图生图、多图融合基础工作流分享

最近 ComfyUI对于Stable Cascade的支持越来越好了一些&#xff0c;官方也放出来一些工作流供参考。 这里简单分享几个比较常用的基础工作流。 &#xff08;如果还没有下载模型&#xff0c;可以先阅读上一篇Stable Cascade升级&#xff0c;现在只需要两个模型&#xff09; &a…

2024国际元宇宙博览会:阿里元境以元宇宙数字内容助力文旅数字化发展

2月26日&#xff0c;MES2024国际元宇宙博览会在深圳会展中心正式开幕&#xff0c;大会以“向3D出发&#xff0c;元宇宙来袭&#xff0c;电竞娱乐正当时”为主题&#xff0c;聚焦元宇宙产业链&#xff0c;以“汇聚企业创新&#xff0c;助力产业重构&#xff0c;推动行业发展”为…

常见外设学习以及无线通信频率

常见外设 UART UART&#xff08;Universal Asynchronous Receiver/Transmitter&#xff0c;通用异步收发器&#xff09;是一种异步、串行、全双工的通信总线。 UART 有3根线&#xff0c;分别是&#xff1a;发送线&#xff08;TX&#xff09;、接收线&#xff08;RX&#xff…

【C语言】文件及文件操作详解(fseek,ftell,rwind)

目录 1. 为什么使用文件 2. 什么是文件 2.1 程序文件 2.2 数据文件 2.3 文件名 3. 二进制文件和文本文件 4. 文件的打开和关闭 4.1 流和标准流 4.1.1 流 4.1.2 标准流 4.2 文件指针 4.3 文件的打开和关闭 5. 文件的顺序读写 6.文件的随机读写 6.1 fseek 6.2 ft…

java 基础(核心知识搭配代码)

前言 java的学习分为了上部分以及下部分进行学习&#xff0c;上部分就是对于java的基础知识&#xff0c;面向对象上&#xff0c;面向对象下&#xff0c;异常操作&#xff0c;javaApi&#xff1b;下部主要是集合&#xff0c;泛型&#xff0c;反射&#xff0c;IO流&#xff0c;J…

离线数仓(四)【数仓数据同步策略】

前言 今天来把数仓数据同步解决掉&#xff0c;前面我们已经把日志数据到 Kafka 的通道打通了。 1、实时数仓数据同步 关于实时数仓&#xff0c;我们的 Flink 直接去 Kafka 读取即可&#xff0c;我们在学习 Flink 的时候也知道 Flink 提供了 Kafka Source&#xff0c;所以这里不…

SQLPro Studio:数据库管理的革命性工具 mac版

SQLPro Studio是一款强大的数据库管理和开发工具&#xff0c;它旨在提供高效、便捷和安全的数据库操作体验。无论是数据库管理员、开发人员还是数据分析师&#xff0c;SQLPro Studio都能满足他们在数据库管理、查询、设计和维护方面的需求。 SQLPro Studio mac版软件获取 首先…

Android ANR 日志分析定位

ANR 是 Android 应用程序中的 "Application Not Responding" 的缩写&#xff0c;中文意思是 "应用程序无响应"。这是当应用程序在 Android 系统上运行时&#xff0c;由于某种原因不能及时响应用户输入事件或执行一个操作&#xff0c;导致界面无法更新&…

蓝桥杯备战刷题two(自用)

1.杨辉三角形 #include<iostream> using namespace std; #define ll long long const int N2e510; int a[N]; //1 0 0 0 0 0 0 //1 1 0 0 0 0 0 //1 2 1 0 0 0 0 //1 3 3 1 0 0 0 //1 4 6 4 1 0 0 //1 5 10 10 5 1 //前缀和思想 //第一列全为1,第二列为从0开始递增1的序…

探索数据结构:深入了解顺序表的奥秘

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属专栏&#xff1a;数据结构与算法 贝蒂的主页&#xff1a;Betty’s blog 1. 什么是顺序表 顺序表是用一段物理地址连续的存储单元依次存储数据元…