ChatGPT支持下的PyTorch机器学习与深度学习技术应用

近年来,随着AlphaGo、无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是深度学习技术,在许多行业都取得了颠覆性的成果。另外,近年来,Pytorch深度学习框架受到越来越多科研人员的关注和喜爱。本文详细介绍深度学习的基础知识,与经典机器学习算法的区别与联系,以及最新的迁移学习、循环神经网络、长短时记忆神经网络、时间卷积网络、对抗生成网络、Yolo目标检测算法、自编码器等算法的原理及其Pytorch编程实现方法。

郁磊(副教授)主要从事AI人工智能、大语言模型及软件开发、生理系统建模与仿真、生物医学信号处理,具有丰富的科研经验,主编《MATLAB智能算法30个案例分析》、《MATLAB神经网络43个案例分析》相关著作。已发表多篇高水平的国际学术研究论文。

第一章、ChatGPT在科研中的应用

1、ChatGPT对话初体验

2、GPT-3.5与GPT-4的区别

3、ChatGPT科研必备插件(Data Interpreter、Wolfram、WebPilot、MixerBox Scholar、ScholarAI、Show Me、AskYourPDF等)

4、ChatGPT提示词使用技巧

5、基于ChatGPT的数据预处理(上传本地数据、数据预处理、数据可视化)

6、基于ChatGPT的机器学习与深度学习建模(算法原理讲解、自动生成代码、调试代码)

7、基于ChatGPT的论文写作(文献综述、论文框架、中英翻译、语法校正、文章润色等)

第二章、数据清洗

1、描述性统计分析(数据的频数分析:统计直方图;数据的集中趋势分析:算数平均值、标准差;数据的相关分析:相关系数)

2、数据标准化与归一化(为什么需要标准化与归一化?)

3、数据异常值、缺失值处理

4、数据离散化及编码处理

5、手动生成新特征

6、案例

第三章、线性回归模型

1、一元线性回归模型与多元线性回归模型(回归参数的估计、回归方程的显著性检验、残差分析)

2、岭回归模型(工作原理、岭参数k的选择、用岭回归选择变量)

3、LASSO模型(工作原理、特征选择、建模预测、超参数调节)

4、Elastic Net模型(工作原理、建模预测、超参数调节)

5、案例

第四章、前向型神经网络

1、BP神经网络的基本原理(人工神经网络的分类有哪些?有导师学习和无导师学习的区别是什么?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?BP神经网络建模的本质是什么?)

2、BP神经网络的Python代码实现(怎样划分训练集和测试集?为什么需要归一化?归一化是必须的吗?什么是梯度爆炸与梯度消失?)

3、PyTorch代码实现神经网络的基本流程(Data、Model、Loss、Gradient)及训练过程(Forward、Backward、Update)

4、值得研究的若干问题(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?过拟合(Overfitting)与欠拟合(Underfitting)、泛化性能评价指标的设计、样本不平衡问题、模型评价与模型选择(奥卡姆剃刀定律)等)

5、案例:Linear模型、Logistic模型、Softmax函数输出、BP神经网络

第五章、KNN、贝叶斯分类与支持向量机

1、KNN分类模型(KNN算法的核心思想、距离度量方式的选择、K值的选取、分类决策规则的选择)

2、朴素贝叶斯分类模型(伯努利朴素贝叶斯BernoulliNB、类朴素贝叶斯CategoricalNB、高斯朴素贝叶斯besfGaussianNB、多项式朴素贝叶斯MultinomialNB、补充朴素贝叶斯ComplementNB)

3、SVM的工作原理(SVM的本质是解决什么问题?核函数的作用是什么?什么是支持向量?

4、SVM扩展知识(如何解决多分类问题?SVM除了建模型之外,还可以帮助我们做哪些事情?)

5、案例

第六章、决策树、随机森林、XGBoost、LightGBM

1、决策树的工作原理(微软小冰读心术的启示;什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系);决策树除了建模型之外,还可以帮我们做什么事情?

2、随机森林的工作原理(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”体现在哪些地方?随机森林的本质是什么?怎样可视化、解读随机森林的结果?)

3、Bagging与Boosting的区别与联系

4、AdaBoost vs. Gradient Boosting的工作原理

5. 常用的GBDT算法框架(XGBoost、LightGBM)

6、案例

第七章、变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理

3、常见的特征选择方法(优化搜索、Filter和Wrapper等;前向与后向选择法;区间法;无信息变量消除法;正则稀疏优化方法等)

4、案例

第八章、群优化算法

1、遗传算法(Genetic Algorithm, GA)的基本原理(粒子群算法、蜻蜓算法、蝙蝠算法、模拟退火算法等与遗传算法的区别与联系)

2、遗传算法的Python代码实现

3、案例一:一元函数的寻优计算

4、案例二:离散变量的寻优计算(特征选择)

第九章、卷积神经网络

1、深度学习简介(深度学习大事记:Model + Big Data + GPU + AlphaGo)

2、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?)

2、卷积神经网络的基本原理(什么是卷积核、池化核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?)

3、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

4、利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

5、卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

6案例:

(1)CNN预训练模型实现物体识别

(2)利用卷积神经网络抽取抽象特征

(3)自定义卷积神经网络拓扑结构

第十章、迁移学习

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)

2、基于深度神经网络模型的迁移学习算法

3、案例:猫狗大战(Dogs vs. Cats

第十一章、RNN与LSTM

1、循环神经网络RNN的基本工作原理

2、长短时记忆网络LSTM的基本工作原理

3、案例:时间序列预测(北京市污染物预测)

第十二章、目标检测算法

1、什么是目标检测?目标检测与目标识别的区别与联系

2、YOLO模型的工作原理,YOLO模型与传统目标检测算法的区别

3、案例讲解:

(1)利用预训练好的YOLO模型实现目标检测(图像检测、视频检测、摄像头实时检测)

(2)数据标注演示(LabelImage使用方法介绍)

(3)训练自己的目标检测数据集

第十三章、自编码器

1、什么是自编码器(Auto-Encoder, AE)?

2、经典的几种自编码器模型原理介绍(AE、Denoising AE, Masked AE)

3、案例:

(1)基于自编码器的噪声去除

(2)基于自编码器的手写数字特征提取与重构

(3)基于掩码自编码器的缺失图像重构

原文链接:

https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247680679&idx=4&sn=41ac52c3469e5745216069f04b0b036f&chksm=fa775d9acd00d48cd1f91e69b1d140032c154f69ff253d26cca885c62fadf8a7cd6dc863b4aa&token=936512705&lang=zh_CN#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/267800.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WordPress分类目录ID怎么看?如何查找WordPress标签ID?

在WordPress网站中,我们需要判断某篇文章是否属于某个分类目录,或者是否拥有某个标签,那么就需要用到分类目录ID和标签ID,那么WordPress分类目录ID怎么看?如何查找WordPress标签ID?下面boke112百科就跟大家…

SQL 术语:Join 中的 Build 和 Probe 是什么意思?

博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,…

数字化转型导师坚鹏:证券公司数字化转型战略、方法与案例

证券公司数字化转型战略、方法与案例 课程背景: 数字化转型背景下,很多机构存在以下问题: 不清楚证券公司数字化转型的发展战略? 不知道证券公司数字化转型的核心方法? 不知道证券公司数字化转型的成功案例&am…

nginx 反向代理 与缓存功能

一 理论说明 (一)反向代理简介 反向代理:reverse proxy,指的是代理外网用户的请求到内部的指定的服务器,并将数据返回给用户的一种方式,这是用的比较多的一种方式。 即 代理服务机 Nginx 除了可以在企…

概率基础——多元正态分布

概率基础——多元正态分布 介绍 多元正态分布是统计学中一种重要的多维概率分布,描述了多个随机变量的联合分布。在多元正态分布中,每个随机变量都服从正态分布,且不同随机变量之间可能存在相关性。本文将以二元标准正态分布为例&#xff0…

图神经网络实战——基于DeepWalk创建节点表示

图神经网络实战——基于DeepWalk创建节点表示 0. 前言1. Word2Vec1.1 CBOW 与 skip-gram1.2 构建 skip-gram 模型1.3 skip-gram 模型1.4 实现 Word2Vec 模型 2. DeepWalk 和随机行走3. 实现 DeepWalk小结系列链接 0. 前言 DeepWalk 是机器学习 (machine learning, ML) 技术在图…

matlab阶段学习小节1

数组排序 fliplr()实现数组倒序,但不对大小进行排序,只是元素位置掉头。 要想实现大小倒序排列,可以先sort()实现正序排列,再用fliplr倒一下 %数组运算 %矩阵 %xAb的解xb/A;(矩阵) %右除运算A/B,左矩阵为被除数&a…

SLAM ORB-SLAM2(21)基础矩阵的计算和评分

SLAM ORB-SLAM2(21)基础矩阵的计算和评分 1. 前言2. 基础矩阵2.1. 对级约束2.2. 推导2.3. 计算原理 3. ComputeF214. CheckFundamental 1. 前言 在 《SLAM ORB-SLAM2(20)查找基础矩阵》 中了解到 查找基础矩阵主要过程&#xff1…

基于springboot+vue的美食推荐商城

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

SLAM基础知识-卡尔曼滤波

前言: 在SLAM系统中,后端优化部分有两大流派。一派是基于马尔科夫性假设的滤波器方法,认为当前时刻的状态只与上一时刻的状态有关。另一派是非线性优化方法,认为当前时刻状态应该结合之前所有时刻的状态一起考虑。 卡尔曼滤波是…

【Transformer】笔记

主要参考 https://zhuanlan.zhihu.com/p/366592542 https://mp.weixin.qq.com/s/b-_M8GPK7FD7nbPlN703HQ 其他参考 原理 https://zhuanlan.zhihu.com/p/627448301 多头注意力机制 https://zhuanlan.zhihu.com/p/611684065 https://blog.csdn.net/shizheng_Li/article/details/1…

Launch学习

参考博客: (1) 史上最全的launch的解析来啦,木有之一欧 1 ROS工作空间简介 2 元功能包 src目录下可以包含多个功能包,假设需要使用机器人导航模块,但是这个模块中包含着地图、定位、路径规划等不同的功能包,它们的逻…

【二】【SQL】去重表数据及分组聚合查询

去重表数据 表的准备工作 去除表中重复的数据,重复的数据只留一份。 mysql> create table duplicate_table (-> id int,-> name varchar(20)-> ); Query OK, 0 rows affected (0.03 sec)mysql> insert into duplicate_table values-> (100,aaa)…

Doris——纵腾集团流批一体数仓架构

目录 前言 一、早期架构 二、架构选型 三、新数据架构 3.1 数据中台 3.2 数仓建模 3.3 数据导入 四、实践经验 4.1 准备阶段 4.2 验证阶段 4.3 压测阶段 4.4 上线阶段 4.5 宣导阶段 4.6 运行阶段 4.6.1 Tablet规范问题 4.6.2 集群读写优化 五、总结收益 六…

深度学习PyTorch 之 RNN-中文多分类

关于RNN的理论部分我们已经在前面介绍过,所以这里直接上代码 1、 数据部分 1.1 读取数据 # 加载数据 data_path ./data/news.csv data pd.read_csv(data_path)# 预览数据的前几行 data.head()数据是csv格式,只有两列,第一列是标签&#…

【解决方案】ArcGIS Engine二次开发时,运行后出现“正尝试在 OS 加载程序锁内执行托管代码。不要尝试在 DllMain...”

我们在做ArcGIS Engine二次开发时,特别是新手,安装好了开发环境,满怀信心的准备将按照教程搭建好的框架在Visual Studio中进行运行。点击运行后,却出现了“正尝试在 OS 加载程序锁内执行托管代码。不要尝试在 DllMain 或映像初始化…

ABAP - SALV教程06 - 列的设置(隐藏、修改、优化列宽)

SAVL要想像Function ALV或OO ALV那样设置Fieldcat,也是有方法的。通过取得全体列的类引用 CL_SALV_COLUMNS来进行修改 METHOD set_columns.* 取得全部列的对象DATA(lo_cols) co_alv->get_columns( ).* 设置自动优化列宽度lo_cols->set_optimize( X ).T…

实例驱动计算机网络

文章目录 计算机网络的层次结构应用层DNSHTTP协议HTTP请求响应过程 运输层TCP协议TCP协议面向连接实现TCP的三次握手连接TCP的四次挥手断开连接 TCP协议可靠性实现TCP的流量控制TCP的拥塞控制TCP的重传机制 UDP协议 网际层IP协议(主机与主机)IP地址的分类…

计算机视觉基础知识(十六)--图像识别

图像识别 信息时代的一门重要技术;目的是让计算机代替人类处理大量的物理信息;随着计算机技术的发展,人类对图像识别技术的认识越来越深刻;图像识别技术利用计算机对图像进行处理\分析\理解,识别不同模式的目标和对象;过程分为信息的获取\预处理\特征抽取和选择\分类器设计\分…

在Golang中简化日志记录:提升性能和调试效率

最大化效率和有效故障排除:在Golang中简化日志记录 日志记录是软件开发的一个基本方面,有助于调试、监控和理解应用程序的流程。在Golang中,有效的日志记录实践可以显著提高性能并简化调试过程。本文探讨了优化Golang日志记录的技术&#xf…