【AI Agent系列】【MetaGPT多智能体学习】4. 基于MetaGPT的Team组件开发你的第一个智能体团队

本系列文章跟随《MetaGPT多智能体课程》(https://github.com/datawhalechina/hugging-multi-agent),深入理解并实践多智能体系统的开发。

本文为该课程的第四章(多智能体开发)的第二篇笔记。主要是对MetaGPT中Team组件的学习和实践。

系列笔记

  • 【AI Agent系列】【MetaGPT多智能体学习】0. 环境准备 - 升级MetaGPT 0.7.2版本及遇到的坑
  • 【AI Agent系列】【MetaGPT多智能体学习】1. 再理解 AI Agent - 经典案例和热门框架综述
  • 【AI Agent系列】【MetaGPT多智能体学习】2. 重温单智能体开发 - 深入源码,理解单智能体运行框架
  • 【AI Agent系列】【MetaGPT多智能体学习】3. 开发一个简单的多智能体系统,兼看MetaGPT多智能体运行机制

文章目录

  • 系列笔记
  • 0. Team组件介绍
    • 0.1 基本参数
    • 0.2 重要函数
      • 0.2.1 hire - 雇佣员工,往Team中添加Role
      • 0.2.2 invest - 投资,设置程序总预算
      • 0.2.3 run_project
      • 0.2.4 run - Team开始运行的入口
    • 0.3 总结
  • 1. 基于Team开发你的第一个智能体团队
    • 1.1 demo需求描述
    • 1.2 写代码
      • 1.2.1 SimpleCoder
      • 1.2.2 SimpleTester
      • 1.2.3 SimpleReviewer
      • 1.2.4 组成Team并运行
      • 1.2.5 完整代码
      • 1.2.6 运行过程及结果展示
  • 2. 总结

0. Team组件介绍

我们在刚开始搭建环境的时候,跑的第一个例子就使用了Team组件。当时只是复制粘贴,用它将程序跑起来了,但其背后的机制和原理是什么还没有学习过。下面从部分源码中,看下Team组件的运行机制。

0.1 基本参数

class Team(BaseModel):"""Team: Possesses one or more roles (agents), SOP (Standard Operating Procedures), and a env for instant messaging,dedicated to env any multi-agent activity, such as collaboratively writing executable code.团队:拥有一个或多个角色(代理人)、标准操作流程(SOP)和一个用于即时通讯的环境,致力于开展任何多代理活动,如协作编写可执行代码。"""model_config = ConfigDict(arbitrary_types_allowed=True)env: Optional[Environment] = Noneinvestment: float = Field(default=10.0)idea: str = Field(default="")

其中主要三个参数:

  • env:多智能体运行的环境
  • investment:投资,用来设置整个程序运行的预算,控制token消耗,当程序运行超过这个预设值后,会强制停止
  • idea:用户的输入、需求

0.2 重要函数

0.2.1 hire - 雇佣员工,往Team中添加Role

这个函数实现的功能其实就是往自身的环境中添加Role。

def hire(self, roles: list[Role]):"""Hire roles to cooperate"""self.env.add_roles(roles)

0.2.2 invest - 投资,设置程序总预算

用来设置整个程序运行的预算,控制token消耗,当程序运行超过这个预设值后,会强制停止。

def invest(self, investment: float):"""Invest company. raise NoMoneyException when exceed max_budget."""self.investment = investmentself.cost_manager.max_budget = investmentlogger.info(f"Investment: ${investment}.")

0.2.3 run_project

这个函数的名有点欺骗性,你可能以为这是开始运行整个Team的入口,其实不是。它只是往Team的环境中放入第一条用户消息而已。

idea 为用户的输入或需求。这个函数的主要功能是调用了 Environment 的 publish_message 往环境中送入了一个用户消息。

def run_project(self, idea, send_to: str = ""):"""Run a project from publishing user requirement."""self.idea = idea# Human requirement.self.env.publish_message(Message(role="Human", content=idea, cause_by=UserRequirement, send_to=send_to or MESSAGE_ROUTE_TO_ALL),peekable=False,)

0.2.4 run - Team开始运行的入口

这个才是Team运行的入口函数,当输入了idea时,会转到 run_project 去往自身的环境中放置用户消息。然后在 while循环中,循环运行各个Role。

n_round指定循环的次数,这里默认为3,执行三次 self.env.run()env.run我们上篇文章已经知道了,就是顺序执行环境中所有Role的run函数。

_check_balance函数的功能是检查当前程序消耗的token或钱数是否超过了预算。如果超过了预算,直接弹窗警告 raise NoMoneyException

 @serialize_decorator
async def run(self, n_round=3, idea="", send_to="", auto_archive=True):"""Run company until target round or no money"""if idea:self.run_project(idea=idea, send_to=send_to)while n_round > 0:# self._save()n_round -= 1logger.debug(f"max {n_round=} left.")self._check_balance()await self.env.run()self.env.archive(auto_archive)return self.env.history
def _check_balance(self):if self.cost_manager.total_cost >= self.cost_manager.max_budget:raise NoMoneyException(self.cost_manager.total_cost, f"Insufficient funds: {self.cost_manager.max_budget}")

0.3 总结

看了上面的几个重要函数,是否觉得有点眼熟?这不就是将上篇文章中我们在运行多智能体系统时的main函数拆分成了 hire / run_project / run 函数嘛。

async def main(topic: str, n_round=3):## 类比 Team 的 hire 函数添加 Rolesclassroom.add_roles([Student(), Teacher()])## 类比 Team 的 run_project 函数往环境中写入用户消息classroom.publish_message(Message(role="Human", content=topic, cause_by=UserRequirement,send_to='' or MESSAGE_ROUTE_TO_ALL),peekable=False,)## 类比 Team 的 run 函数控制循环次数while n_round > 0:# self._save()n_round -= 1logger.debug(f"max {n_round=} left.")await classroom.run()return classroom.history

所以,Team 组件的本质,就是对 Environment 接口的封装,同时在此基础上增加了 invest 的预算控制而已。

1. 基于Team开发你的第一个智能体团队

1.1 demo需求描述

总的需求,简单的软件开发流程:一个写代码,一个测试代码,一个review代码。

所以需要三个智能体Role:

  • SimpleCoder,Action是 SimpleWriteCode,写代码
  • SimpleTester,Action是 SimpleWriteTest,接收 SimpleCoder 的代码进行测试。也接收 SimpleReviewer 的修改意见进行测试用例改写。
  • SimpleReviewer,Action是 SimpleWriteReview,接收 SimpleTester 的测试用例,检查其覆盖范围和质量,给出测试用例的修改意见。

1.2 写代码

1.2.1 SimpleCoder

SimpleCoder主要用来写代码。

  • 它的Action是SimpleWriteCode,通过 self.set_actions([SimpleWriteCode]) 将该Action设置给SimpleCoder
  • 它的行动指令来源是 UserRequirement,当环境中出现 UserRequirement 来源的消息时,它开始执行Action。通过 self._watch([UserRequirement]) 设置其关注的消息来源。
def parse_code(rsp):pattern = r"```python(.*)```"match = re.search(pattern, rsp, re.DOTALL)code_text = match.group(1) if match else rspreturn code_textclass SimpleWriteCode(Action):PROMPT_TEMPLATE: str = """Write a python function that can {instruction}.Return ```python your_code_here ```with NO other texts,your code:"""name: str = "SimpleWriteCode"async def run(self, instruction: str):prompt = self.PROMPT_TEMPLATE.format(instruction=instruction)rsp = await self._aask(prompt)code_text = parse_code(rsp)return code_textclass SimpleCoder(Role):name: str = "Alice"profile: str = "SimpleCoder"def __init__(self, **kwargs):super().__init__(**kwargs)self._watch([UserRequirement])self.set_actions([SimpleWriteCode])

1.2.2 SimpleTester

SimpleTester 用来写测试用例代码。

  • 其Action为SimpleWriteTest,通过 self.set_actions([SimpleWriteTest]) 指定。
  • 其行动指令来源,一个是 SimpleWriteCode,接收主代码,根据主代码写单测的测试用例。第二个来源是 SimpleWriteReview,接收测试用例修改意见,根据修改意见完善测试用例。通过 self._watch([SimpleWriteCode, SimpleWriteReview]) 来指定关注的消息来源。
class SimpleWriteTest(Action):PROMPT_TEMPLATE: str = """Context: {context}Write {k} unit tests using pytest for the given function, assuming you have imported it.Return ```python your_code_here ```with NO other texts,your code:"""name: str = "SimpleWriteTest"async def run(self, context: str, k: int = 3):prompt = self.PROMPT_TEMPLATE.format(context=context, k=k)rsp = await self._aask(prompt)code_text = parse_code(rsp)return code_textclass SimpleTester(Role):name: str = "Bob"profile: str = "SimpleTester"def __init__(self, **kwargs):super().__init__(**kwargs)self.set_actions([SimpleWriteTest])# self._watch([SimpleWriteCode])self._watch([SimpleWriteCode, SimpleWriteReview])  # feel free to try this tooasync def _act(self) -> Message:logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")todo = self.rc.todo# context = self.get_memories(k=1)[0].content # use the most recent memory as contextcontext = self.get_memories()  # use all memories as contextcode_text = await todo.run(context, k=5)  # specify argumentsmsg = Message(content=code_text, role=self.profile, cause_by=type(todo))return msg

1.2.3 SimpleReviewer

SimpleReviewer 用来对测试用例代码进行Review,给出修改意见。

  • 其Action为SimpleWriteReview,通过 self.set_actions([SimpleWriteReview]) 指定。
  • 其行动指令来源为 SimpleWriteTest,接收测试用例代码,根据测试用例代码给出修改意见。通过 self._watch([SimpleWriteTest]) 来指定关注的消息来源。
class SimpleWriteReview(Action):PROMPT_TEMPLATE: str = """Context: {context}Review the test cases and provide one critical comments:"""name: str = "SimpleWriteReview"async def run(self, context: str):prompt = self.PROMPT_TEMPLATE.format(context=context)rsp = await self._aask(prompt)return rspclass SimpleReviewer(Role):name: str = "Charlie"profile: str = "SimpleReviewer"def __init__(self, **kwargs):super().__init__(**kwargs)self.set_actions([SimpleWriteReview])self._watch([SimpleWriteTest])

1.2.4 组成Team并运行

下面就是将上面的三个 Role 放到一个 Team 中。

  • hire 函数添加上面的三个 Role 到 Team 中
  • invest 函数设置总预算
  • run_project 函数将 idea 任务放到环境中
  • run 函数让整个 Team 运行起来
async def main(idea: str = "write a function that calculates the product of a list",investment: float = 3.0,n_round: int = 5,add_human: bool = False,
):logger.info(idea)team = Team()team.hire([SimpleCoder(),SimpleTester(),SimpleReviewer(is_human=add_human),])team.invest(investment=investment)team.run_project(idea)await team.run(n_round=n_round)if __name__ == "__main__":fire.Fire(main)

1.2.5 完整代码

"""
Filename: MetaGPT/examples/build_customized_multi_agents.py
Created Date: Wednesday, November 15th 2023, 7:12:39 pm
Author: garylin2099
"""
import reimport firefrom metagpt.actions import Action, UserRequirement
from metagpt.logs import logger
from metagpt.roles import Role
from metagpt.schema import Message
from metagpt.team import Teamdef parse_code(rsp):pattern = r"```python(.*)```"match = re.search(pattern, rsp, re.DOTALL)code_text = match.group(1) if match else rspreturn code_textclass SimpleWriteCode(Action):PROMPT_TEMPLATE: str = """Write a python function that can {instruction}.Return ```python your_code_here ```with NO other texts,your code:"""name: str = "SimpleWriteCode"async def run(self, instruction: str):prompt = self.PROMPT_TEMPLATE.format(instruction=instruction)rsp = await self._aask(prompt)code_text = parse_code(rsp)return code_textclass SimpleCoder(Role):name: str = "Alice"profile: str = "SimpleCoder"def __init__(self, **kwargs):super().__init__(**kwargs)self._watch([UserRequirement])self.set_actions([SimpleWriteCode])class SimpleWriteTest(Action):PROMPT_TEMPLATE: str = """Context: {context}Write {k} unit tests using pytest for the given function, assuming you have imported it.Return ```python your_code_here ```with NO other texts,your code:"""name: str = "SimpleWriteTest"async def run(self, context: str, k: int = 3):prompt = self.PROMPT_TEMPLATE.format(context=context, k=k)rsp = await self._aask(prompt)code_text = parse_code(rsp)return code_textclass SimpleTester(Role):name: str = "Bob"profile: str = "SimpleTester"def __init__(self, **kwargs):super().__init__(**kwargs)self.set_actions([SimpleWriteTest])# self._watch([SimpleWriteCode])self._watch([SimpleWriteCode, SimpleWriteReview])  # feel free to try this tooasync def _act(self) -> Message:logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")todo = self.rc.todo# context = self.get_memories(k=1)[0].content # use the most recent memory as contextcontext = self.get_memories()  # use all memories as contextcode_text = await todo.run(context, k=5)  # specify argumentsmsg = Message(content=code_text, role=self.profile, cause_by=type(todo))return msgclass SimpleWriteReview(Action):PROMPT_TEMPLATE: str = """Context: {context}Review the test cases and provide one critical comments:"""name: str = "SimpleWriteReview"async def run(self, context: str):prompt = self.PROMPT_TEMPLATE.format(context=context)rsp = await self._aask(prompt)return rspclass SimpleReviewer(Role):name: str = "Charlie"profile: str = "SimpleReviewer"def __init__(self, **kwargs):super().__init__(**kwargs)self.set_actions([SimpleWriteReview])self._watch([SimpleWriteTest])async def main(idea: str = "write a function that calculates the product of a list",investment: float = 3.0,n_round: int = 5,add_human: bool = False,
):logger.info(idea)team = Team()team.hire([SimpleCoder(),SimpleTester(),SimpleReviewer(is_human=add_human),])team.invest(investment=investment)team.run_project(idea)await team.run(n_round=n_round)# 最后这两句可以合成一句:await team.run(n_round=n_round, idea=idea)if __name__ == "__main__":fire.Fire(main)

1.2.6 运行过程及结果展示

(1)用户消息输入,SimpleCoder开始动作,写出代码

在这里插入图片描述

(2)SimpleTester 接收到 SimpleCoder 写完的代码,开始写测试用例。

在这里插入图片描述

(3)SimpleReviewer 接收到 SimpleTester 写的测试用例,开始审核并给出修改意见

在这里插入图片描述

(4)SimpleTester 接收到 SimpleReviewer 的修改意见,开始优化测试用例。
在这里插入图片描述
(5)SimpleReviewer 接收到 SimpleTester 优化后的测试用例,进行审核并再次给出修改意见
在这里插入图片描述
(6)SimpleTester 和 SimpleReviewer 之间循环交互 n 次

2. 总结

通过本节内容,学习了MetaGPT中Team组件的原理与使用方法。

Team 组件就是在原来 Environment 组件的基础上进行封装,增加了一个invest来控制整体成本。其主要函数为 hireinvestrun


站内文章一览

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/269033.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二叉搜索树题目:将有序数组转换为二叉搜索树

文章目录 题目标题和出处难度题目描述要求示例数据范围 解法思路和算法证明代码复杂度分析 题目 标题和出处 标题:将有序数组转换为二叉搜索树 出处:108. 将有序数组转换为二叉搜索树 难度 4 级 题目描述 要求 给定整数数组 nums \texttt{nums}…

力扣 第 125 场双周赛 解题报告 | 珂学家 | 树形DP + 组合数学

前言 整体评价 T4感觉有简单的方法&#xff0c;无奈树形DP一条路上走到黑了&#xff0c;这场还是有难度的。 T1. 超过阈值的最少操作数 I 思路: 模拟 class Solution {public int minOperations(int[] nums, int k) {return (int)Arrays.stream(nums).filter(x -> x <…

springboot230基于Spring Boot在线远程考试系统的设计与实现

在线远程考试系统设计与实现 摘 要 信息数据从传统到当代&#xff0c;是一直在变革当中&#xff0c;突如其来的互联网让传统的信息管理看到了革命性的曙光&#xff0c;因为传统信息管理从时效性&#xff0c;还是安全性&#xff0c;还是可操作性等各个方面来讲&#xff0c;遇到…

协议和序列化反序列化

“协议”和序列化反序列化 “协议”的概念&#xff1a; “协议”本身是一种约定俗成的东西&#xff0c;由通讯双方必须共同遵从的一组约定&#xff0c;因此我们一定要将这种约定用计算机语言表达出来&#xff0c;此时双方计算机才能识别约定的相关内容 我们把这个规矩叫做“…

今晚打老虎:用katalon解决接口/自动化测试拦路虎--参数化

不管是做接口测试还是做自动化测试&#xff0c;参数化肯定是一个绕不过去的坎。 因为我们要考虑到多个接口都使用相同参数的问题。所以&#xff0c;本文将讲述一下katalon是如何进行参数化的。 全局变量 右侧菜单栏中打开profile&#xff0c;点击default&#xff0c;打开之后…

【LeetCode】升级打怪之路 Day 11:栈的应用、单调栈

今日题目&#xff1a; Problem 1: 栈的应用 155. 最小栈 | LeetCode20. 有效的括号 | LeetCode150. 逆波兰表达式求值 | LeetCode Problem 2: 单调栈 496. 下一个更大元素 I739. 每日温度503. 下一个更大元素 II 目录 Problem 1&#xff1a;栈 - “先进后出”的应用LC 155. 最…

IO(Linux)

文件系统 前言1. 回顾关于C文件部分函数2. 一些文件知识的共识3. 相对路径4. fwrite中的\0 一、文件描述符fd1. 概念2. 系统调用① open 和 close② write③ read 和 lseek 3. 缺省打开的fd 二、重定向1. 原理2. 系统调用dup23. stdout和stderr的区别4. 进程替换和原来进程文件…

Linux笔记-3

软件安装 概述 在Linux中&#xff0c;软件安装分为3种方式&#xff1a;绿色安装(压缩包解压之后就能直接使用)&#xff0c;rpm安装(类似于Windows中的exe或者msi文件)&#xff0c;yum安装 RPM(Red Hat Package Manager)&#xff1a;红帽提供的软件包的管理工具。可以通过rpm命…

Github项目推荐-LightMirrors

项目地址 https://github.com/NoCLin/LightMirrors 项目简述 “LightMirrors是一个开源的缓存镜像站服务&#xff0c;用于加速软件包下载和镜像拉取。目前支持DockerHub、PyPI、PyTorch、NPM等镜像缓存服务。 当前项目仍处于早期阶段。”–来自项目说明。 也就是说&#xff…

vue中使用prettier

前言&#xff1a;prettier是一款有态度的代码格式化工具&#xff0c;它可以集成在IDE中&#xff0c;如VS Code、Web Storm等&#xff0c;也可以安装到我们开发的项目里面。本文主要讲解在Vue中集成prettier的过程&#xff0c;可以便于代码检测和格式化。 prettier官网 从官网的…

ardupilot 及PX4姿态误差计算算法对比分析

目录 文章目录 目录摘要1.APM姿态误差计算算法2.PX4姿态误差计算算法3.结论摘要 本节主要记录ardupilot 及PX4姿态误差计算算法差异对比过程,欢迎批评指正。 备注: 1.创作不易,有问题急时反馈 2.需要理解四元物理含义、叉乘及点乘含义、方向余弦矩阵含义、四元数乘法物理含…

vue+element ui上传图片到七牛云服务器

本来打算做一个全部都是前端完成的资源上传到七牛云的demo&#xff0c;但是需要获取token&#xff0c;经历了九九八十一难&#xff0c;最终还是选择放弃&#xff0c;token从后端获取&#xff08;springboot&#xff09;。如果你们有前端直接能解决的麻烦记得私我哦&#xff01;…

【最新】如何将idea上的项目推送到gitee

1.打开Gitee&#xff0c;在首页&#xff0c;点击“”&#xff0c;创建一个仓库 2.填写仓库基本信息 3.下拉&#xff0c;点击“创建”&#xff0c;出现下方页面&#xff0c;证明仓库创建成功。 4.打开idea&#xff0c;下载gitee的插件&#xff08;此处默认已经下载git&#xff0…

布隆过滤器实战

一、背景 本篇文章以解决实际需求的问题的角度进行切入&#xff0c;探讨了如果使用布隆过滤器快速丢弃无效请求&#xff0c;降低了系统的负载以及不必要的流量。 我们都知道布隆过滤器是以占用内存小&#xff0c;同时也能够实现快速的过滤从而满足我们的需求&#xff0c;本篇…

termux上安装Python

Termux是一款Android平台下的终端模拟器和Linux环境应用&#xff0c;它允许用户在移动设备上访问Linux命令行界面&#xff0c;以便使用命令行工具、脚本、开发环境等功能。 要在Termux上安装Python&#xff0c;请按照以下步骤进行操作&#xff1a; 一&#xff0c;下载termux …

温湿度传感器SHT21

SHT21是一款基于IIC的温湿度传感器&#xff0c;它的引脚及定义如下&#xff1a; 标准的IIC器件&#xff0c;没有其他多余的引脚&#xff0c;应用框图如下&#xff1a; 温度的测量范围是-40到125℃&#xff0c;湿度测量范围0-100%RH&#xff0c;具体参数及采样精度见下图&#x…

如何限制一个账号只在一处登陆

大家好&#xff0c;我是广漂程序员DevinRock&#xff01; 1. 需求分析 前阵子&#xff0c;和问答群里一个前端朋友&#xff0c;随便唠了唠。期间他问了我一个问题&#xff0c;让我印象深刻。 他问的是&#xff0c;限制同一账号只能在一处设备上登录&#xff0c;是如何实现的…

C语言操作符详解(一)

一、操作符的分类 • 算术操作符&#xff1a; 、- 、* 、/ 、% • 移位操作符:<< >> • 位操作符: & | ^ • 赋值操作符: 、 、 - 、 * 、 / 、% 、<< 、>> 、& 、| 、^ • 单⽬操作符&#xff1a; &#xff01;、、--、&、*、、…

嵌入式基础知识-信号量,PV原语与前趋图

本篇来介绍信号量与PV原语的一些知识&#xff0c;并介绍其在前趋图上的应用分析。本篇的知识属于操作系统部分的通用知识&#xff0c;在嵌入式软件开发中&#xff0c;同样会用到这些知识。 1 信号量 信号量是最早出现的用来解决进程同步与互斥问题的机制&#xff08;可以把信…

深入了解 Android 中的 FrameLayout 布局

FrameLayout 是 Android 中常用的布局之一&#xff0c;它允许子视图堆叠在一起&#xff0c;可以在不同位置放置子视图。在这篇博客中&#xff0c;我们将详细介绍 FrameLayout 的属性及其作用。 <FrameLayout xmlns:android"http://schemas.android.com/apk/res/androi…