【YOLO v5 v7 v8 v9小目标改进】AFPN 渐进式特征金字塔网络:解决多尺度特征融合中,信息在传递过程丢失

AFPN 渐进式特征金字塔网络:解决多尺度特征融合中,信息在传递过程丢失

    • 提出背景
      • AFPN = 多尺度特征金字塔 + 非邻近层次的直接特征融合 + 自适应空间融合操作
    • 小目标涨点
      • YOLO v5 魔改
      • YOLO v7 魔改
      • YOLO v8 魔改
      • YOLO v9 魔改

 


提出背景

论文:https://arxiv.org/pdf/2306.15988.pdf

代码:https://github.com/gyyang23/AFPN

 
对象检测是计算机视觉中的一个任务,目的是在图片或视频中识别出各种物体,并确定它们的位置。

随着深度学习技术的发展,对象检测领域取得了巨大进步。

在这些进步中,一个关键技术是特征金字塔网络(FPN),它帮助模型更好地处理不同大小的物体。

特征金字塔(如FPN、PAFPN、NASFPN)建立了一个多层次的特征表示体系,允许系统在不同的分辨率上捕捉图像的特征,以便能够检测不同大小的物体。

  • 它们解决了单一尺度特征分析的局限性,为特征融合提供了多尺度的特征来源。

特征融合模块(如CARAFE、ASFF、DRFPN)则进一步增强了这些特征的表示能力,通过各种方法(上采样、加权融合、注意力机制)优化了不同层级特征之间的融合,提高了特征金字塔中特征的质量和检测模型的性能。

 

AFPN = 多尺度特征金字塔 + 非邻近层次的直接特征融合 + 自适应空间融合操作

什么是AFPN?

AFPN(渐进式特征金字塔网络)是在特征金字塔和特征融合模块基础上的进一步创新和优化。

AFPN不仅采用了特征金字塔的多尺度特征表示理念,还引入了高效和创新的渐进式特征融合策略,特别是非邻近层次的直接特征融合自适应空间融合操作

  • 自适应空间融合操作解决了特征融合过程中的信息冲突问题
  • 渐进式特征融合则优化了信息流在不同层级间的传递,最大化地保留了有用的信息
  • 非邻近层次的直接特征融合,跨层级信息融合,允许高层特征直接与更低层特征结合,跳过中间层级,这样可以更快地将语义信息整合到细节信息中

AFPN的设计思路与软件工程中的迭代开发有共同点。

在软件开发过程中,开发团队通常不会一开始就完全设计出所有细节,而是通过不断迭代,逐步完善软件的功能和性能。

每个迭代周期中,都会评估现有的设计,引入新的功能,并改进用户体验。

这种逐步逼近最终目标的方法,既保证了项目的灵活性,也允许团队根据反馈不断调整方向,最终达到更优的产品质量。

同样,在建筑领域,设计和构建一个建筑物也往往采用类似的渐进式方法。

从概念设计开始,到初步设计,再到详细设计和施工图纸的制作,每一步都在逐渐加深对建筑物的理解和控制,同时也允许在过程中根据新的信息和条件进行调整。

这种思路的共同点在于,无论是组织活动、软件开发,还是建筑设计,都强调了在过程中灵活适应变化、逐步完善和精细化的重要性。

AFPN通过将这一思路应用到特征金字塔网络的设计中。

AFPN 核心组件:

  1. 非邻近层次直接特征融合:传统的FPN通常只将相邻层次的特征进行融合,而AFPN能够直接将不同层次的特征进行融合,这样可以更好地保留高层的语义信息和低层的细节信息。

  2. 自适应空间融合操作:在合并不同层次的特征时,AFPN使用一种特殊的方法来确保信息不会相互冲突,这样做可以更精准地保留对于识别对象有用的信息。

    因为在多层级特征融合过程中,不同层次的对象信息可能存在矛盾,通过引入自适应空间融合操作,可以过滤并保留对融合过程有用的信息,解决了简单的元素级求和不足以处理复杂信息融合的问题。

    在这里插入图片描述
    上图是对AFPN中使用的自适应空间融合操作的具体说明,展示了在不同层级特征之间应用该操作的效果。

    表明了如何结合来自不同层级的特征以生成一个综合特征,并使用策略自动分配权重,选择来区分上采样、下采样和横向连接。

  3. 从低层特征开始逐步融合高层特征:AFPN采取从低层次开始,并逐步添加高层次特征的方法

    是因为低层特征包含更多的细节信息,而高层特征包含更丰富的语义信息。

    通过从低层开始并逐步融合高层特征,可以确保融合后的特征同时包含细节和语义信息,避免了信息的丢失和降级。

在这里插入图片描述
上图展示了AFPN的结构细节,如特征是如何通过网络的不同层次进行融合的。

它通常会展示从输入图像的原始特征开始,如何通过上采样(增加分辨率)和下采样(降低分辨率)以及横向连接来融合特征。

图中可能会用不同颜色的箭头表示不同操作,比如蓝色箭头可能代表卷积操作,绿色箭头代表自适应空间融合。

 

假设我们要在一张照片中识别和定位不同大小的狗。

  1. 非邻近层次直接特征融合

    • 传统的FPN可能会分别处理照片中的大型狗(使用高层次的特征)和小型狗(使用低层次的特征),然后将这些特征逐层融合。
    • AFPN的方式:它可以直接将识别大型狗的高层次特征与识别小型狗的低层次特征合并。

     
    这意味着,不管狗的大小,模型都能同时考虑狗的整体形状(高层次的语义信息)和毛发、眼睛等细节(低层次的细节信息)。

  2. 自适应空间融合操作

    • 在融合特征时,可能会遇到一些矛盾,比如同一个位置既有大型狗的一部分也有小型狗的一部分。
    • AFPN的方法:它能够识别出这种矛盾,并自动调整融合策略,只保留有助于识别和定位狗的信息。

     
    这样,无论是大狗还是小狗,模型都能更准确地识别它们。

  3. 渐进式特征融合 - 从低层特征开始逐步融合高层特征

    • 一开始,AFPN专注于捕捉照片中的所有狗的细节特征,如毛发纹理和眼睛。
    • 然后,它逐渐添加了识别狗的整体形状和姿态的高层次特征。
    • 这个过程的结果:是一个综合的特征表示,既包含了细节信息(帮助区分不同种类的狗),也包含了语义信息(帮助理解狗的整体形态)。

     
    这使得模型能够在各种大小和姿态的狗中做出准确的识别和定位。

AFPN 不直接处理单个大小的对象,而是综合考虑不同层次的信息,以更全面地理解图像内容。

小目标涨点

更新中…

YOLO v5 魔改

YOLO v7 魔改

YOLO v8 魔改

YOLO v9 魔改

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/271731.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据库原理实验课(1)

目录 实验内容 安装头歌中的相关内容 具体过程 完结撒花~ 我也是第一次接触oracle的相关软件和操作,所以是一次傻瓜式教学记录 实验内容 安装头歌中的相关内容 具体过程 这是我在百度网盘中下载解压出来的oracle文件夹内的全部内容(可能有因为安装完…

神州大地人类来源猜想

在公元前2000年以前,伟大的中华民族还是石器时代,我们有很多美好的神话和传说,三皇五帝就是这个时代伟大部落或者部落首领的故事。 关于人类的历史,从基因学上最新的研究成果大概是这样的,虽然从300万年前就诞生了人类…

[Buuctf] [MRCTF2020]Transform

1.查壳 64位exe文件,没有壳 2.用64位IDA打开 找到主函数,F5查看伪代码 从后往前看,有一个判断语句,是两个数组进行比较的,我们双击byte_40F0E0查看里面的内容 所以能够推出byte_414040的内容,byte_4140…

Window下编写的sh文件在Linux/Docker中无法使用

Window下编写的sh文件在Linux/Docker中无法使用 一、sh文件目的1.1 初始状态1.2 目的 二、过程与异常2.1 首先获取标准ubuntu20.04 - 正常2.2 启动ubuntu20.04容器 - 正常2.3 执行windows下写的preInstall文件 - 报错 三、检查和处理3.1 评估异常3.2 处理异常3.3 调整后运行测试…

手写分布式配置中心(三)增加实时刷新功能(短轮询)

要实现配置自动实时刷新,需要改造之前的代码。代码在https://gitee.com/summer-cat001/config-center​​​​​​​ 服务端改造 服务端增加一个版本号version,新增配置的时候为1,每次更新配置就加1。 Overridepublic long insertConfigDO(…

06. Nginx进阶-Nginx代理服务

proxy代理功能 正向代理 什么是正向代理? 正向代理(forward proxy),一个位于客户端和原始服务器之间的服务器。 工作原理 为了从原始服务器获取内容,客户端向代理发送一个请求并指定目标(即原始服务器…

几种电脑提示mfc140.dll丢失的解决方法,以及如何预防mfc140.dll丢失

mfc140.dll真是一个超级关键的动态链接库文件!一旦这个文件不翼而飞,可能会导致一些程序无法顺利运行,甚至给系统带来麻烦。但别担心!遇到mfc140.dll文件丢失的情况,我们有一堆应对措施可以立马施行,确保问…

C++指针(四)万字图文详解!

个人主页:PingdiGuo_guo 收录专栏:C干货专栏 前言 相关文章:C指针(一)、C指针(二)、C指针(三) 本篇博客是介绍函数指针、函数指针数组、回调函数、指针函数的。 点赞破六…

五、软考-系统架构设计师笔记-信息安全技术基础知识

信息安全技术基础知识 1、信息安全基础知识概述 信息安全的概念 信息安全包括 5 个基本要素: 机密性:确保信息不暴露给未授权的实体或进程。完整性:只有得到允许的人才能修改数据,并且能够判别出数据是否已被篡改。可用性:得到授权的实体在需要时可以…

代码随想录 回溯算法-排序

目录 46.全排序 47.全排列|| 332.重新安排行程 46.全排序 46. 全排列 中等 给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1: 输入:nums [1,2,3] 输出:[[1,2,3],[1,…

关于出国留学和考研比较----以本人双非跨考计算机为例

文章目录 中心论点国内就业现状勿让旧认知害了自己那出国留学真的一无是处了吗?1. 藤校仍旧是具有极高价值2. 时间成本低3. 研究生一定比单纯的本科找工作强!4. 很多人说出国读博好,可以无脑入,真是这样吗? 中心论点 如果在选择出国留学还是国内考研的最终核心诉求都是有更好…

985硕的4家大厂实习与校招经历专题分享(part2)

我的个人经历: 985硕士24届毕业生,实验室方向:CV深度学习 就业:工程-java后端 关注大模型相关技术发展 校招offer: 阿里巴巴 字节跳动 等10 研究生期间独立发了一篇二区SCI 实习经历:字节 阿里 京东 B站 (只看大厂,面试…

(MATLAB)第十二章-数列与极限

目录 12.1 数列 12.1.1 数列求和 1. 累计求和函数sum() 2. 忽略NaN累计求和函数 nansum() 3. 求此元素位置之前的元素和函数cumsum() 4. 求梯形累计和函数cumtrapz() 12.1.2 数列求积 1. 元素连续相乘函数 prod() 2. 求累计积函数 cumprod() 3. 阶乘函数 ffactorial(n…

【C++精简版回顾】18.文件操作

1.文件操作头文件 2.操作文件所用到的函数 1.文件io 1.头文件 #include<fstream> 2.打开文件 &#xff08;1&#xff09;函数名 文件对象.open &#xff08;2&#xff09;函数参数 /* ios::out 可读 ios::in 可…

【C++】C++模板基础知识篇

个人主页 &#xff1a; zxctscl 文章封面来自&#xff1a;艺术家–贤海林 如有转载请先通知 文章目录 1. 泛型编程2. 函数模板2.1 函数模板概念2.2 函数模板格式2.3 函数模板的原理2.4 函数模板的实例化2.5 模板参数的匹配原则 3. 类模板3.1 类模板的定义格式3.2 类模板的实例化…

基于Java的生活废品回收系统(Vue.js+SpringBoot)

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容三、界面展示3.1 登录注册3.2 资源类型&资源品类模块3.3 回收机构模块3.4 资源求购/出售/交易单模块3.5 客服咨询模块 四、免责说明 一、摘要 1.1 项目介绍 生活废品回收系统是可持续发展的解决方案&#xff0c;旨在鼓…

硬盘温度过高会怎么办?机箱温度多少算正常?

硬盘温度 硬盘在使用过程中&#xff0c;断电很容易导致数据丢失&#xff0c;但如果温度过高&#xff0c;也可能对硬盘造成损坏。 硬盘的温度是决定电脑能否正常使用的重要因素。 如果长时间读取和存储数据&#xff0c;硬盘的温度会升高。 那么&#xff0c;硬盘的正常温度是多少…

万字详解,Java实现低配版线程池

文章目录 1.什么是线程池2.线程池的优势3.原理4.代码编写4.1 阻塞队列4.2 ThreadPool线程池4.3 Worker工作线程4.4 代码测试 5. 拒绝策略5.1 抽象Reject接口5.2 BlockingQueue新增tryPut方法5.3 修改ThreadPool的execute方法5.4 ThreadPool线程池构造函数修改5.5 拒绝策略实现1…

利用“定时执行专家”循环执行BAT、VBS、Python脚本——含参数指定功能

目录 一、软件概述 二、VBS脚本执行设置 三、触发器设置 四、功能亮点 五、总结 在自动化办公和日常计算机任务管理中&#xff0c;定时执行脚本是一项非常重要的功能。今天&#xff0c;我将为大家带来一款名为“定时执行专家”的软件的评测&#xff0c;特别是其定时执行VB…

Android中的传感器类型和接口名称

本文将介绍传感器坐标轴、基础传感器和复合传感器&#xff08;动作传感器、姿势传感器、未校准传感器和互动传感器&#xff09;。 1. 传感器坐标轴 许多传感器的传感器事件值在相对于设备静止的特定坐标系中表示。 1.1 移动设备坐标轴 Sensor API 仅与屏幕的自然方向相关&a…