无人机遥感在农林信息提取中的实现方法与GIS融合应用

在新一轮互联网信息技术大发展的现今,无人机、大数据、人工智能、物联网等新兴技术在各行各业都处于大爆发的前夜。为了将人工智能方法引入农业生产领域。首先在种植、养护等生产作业环节,逐步摆脱人力依赖;在施肥灌溉环节构建智慧节能系统;在产量预测和商品定价生产管理环节提高效能。这些智慧农业迫切需要实现的目标,首先要解决的问题就是多源数据的获取与快速分析。

  遥感技术作为一种空间大数据手段,能够从多时、多维、多地等角度,获取大量的农情数据。数据具有面状、实时、非接触、无伤检测等显著优势,是智慧农业必须采用的重要技术之一。本课程梳理了我国目前无人机遥感在智慧农业信息提取的综合态势,对无人机平台的性能、机载传感器指标、地面传感器应用、农林遥感光谱指数、农林光谱建模方法进行了大量的分析。在此基础上,按照形态、生理生化、胁迫、估产等四大类信息提取目标,从理论和实践两方面进行了详细的分析。

  其中,围绕着四大类信息,划分为十四个子专题:株数和株高、冠层覆盖度、作物倒伏、不同生育期状况、叶面积指数、作物系数、叶绿素含量、营养元素含量、异常因素胁迫、病虫害、作物衰老、净同化率、蛋白质含量、生物量。对每一个子信息都有相应的数据,涵盖三波段真彩色、多光谱和高光谱无人机数据,进行智慧信息提取的学习。

张博士,来自重点高校及科研院所一线科研人员,长期从事无人机遥感技术与应用研究,主持多项国家级科研项目,编写著作2部,第一作者发表科研论文20余篇。对无人机遥感的多平台、多传感器应用现状,以及涉及的核心技术具有很深的理解,精通ArcGIS、ENVI、R语言、Unscrambler等分析工具,熟悉目前我国无人机多光谱、高光谱、激光雷达等传感器的应用现状,具有丰富的科研及遥感信息提取经验。

本文包括无人机平台和传感器等分析。按照作物形态、生理生化、作物胁迫和产量计算等4大专题,划分为株数和株高、冠层覆盖度、作物倒伏、不同生育期状况、叶面积指数、作物系数、叶绿素含量、营养元素含量、异常因素胁迫、病虫害、作物衰老、净同化率、蛋白质含量、生物量等主要环节。实现既定目标(下图)。

图片

无人机遥感在智慧农业信息提取中的实现方法培训体系图

第一章 综合态势分析

1.1 研究区及作物品种分析

(1)形态指标分析

(2)生理生化指标分析

(3)胁迫指标分析

(4)产量指标分析

(5)综合分析

图片

1.2 无人机平台分析

分析目前常用于农林行业的无人机平台。

图片

1.3 无人机机载传感器分析

分析目前常用于农林行业的无人机机载传感器。

图片

1.4 地面应用传感器分析

分析目前常用于农林行业的地面应用传感器分析。

图片

1.5 农林遥感光谱指数分析

1.6 农林业建模方法分析

图片

第二章 农作物形态信息提取理论与实践

2.1 株数和株高——阈值分割技术

2.1.1 理论与方法

2.1.2 加载影像

2.1.3 波段指数计算

2.1.4 阈值分割

2.1.5 后处理

图片

2.1.6 植株数统计、查询和制图

2.2 冠层覆盖度——属性计算技术

2.2.1 理论与方法

2.2.2 加载影像

2.2.3 导出面积数据

2.2.4 计算冠层覆盖度

2.3 作物倒伏——数字表面模型技术

2.3.1 理论与方法

2.3.2 加载影像

2.3.3 对齐照片

2.3.4 建立密集点云

2.3.4 生成网格

2.3.5 生成纹理

2.3.6 生成数字表面模型

2.3.7 导出DEM数据和正射数据

2.3.8 分析株高和作物倒伏

图片

2.4 不同生育期状况——变化检测技术

2.4.1 理论和方法 41

2.4.2 加载影像 43

2.4.3 变化检测工作流 44

2.4.4 不同生育期结果分析 46

图片

第三章 农作物生理生化信息提取理论与实践

3.1 叶面积指数——多元线性回归技术

3.1.1 理论与方法

3.1.2 加载影像

3.1.3 地面实测数据

3.1.4 假设条件

3.1.5 植被指数提取

图片

3.1.6 数据整理

3.1.7 建立反演模型

3.1.8 数字制图

3.2 作物系数——多项式回归技术

3.2.1 理论与方法

3.2.2 加载影像

3.2.3 地面实测数据

3.2.4 假设条件

3.2.5 归一化水分指数提取

3.2.6 数据整理

3.2.7 建立反演模型

3.2.8 数字制图

图片

3.3 叶绿素含量——相关性分析技术

3.3.1 理论与方法

3.3.2 加载影像

3.2.3 地面实测数据

3.2.4 假设条件

3.2.5 数据采集与整理

3.2.6 相关性分析

3.2.6 建立回归方程

3.1.8 数字制图

图片

3.4 营养元素含量——间接提取技术

3.4.1 理论与方法

3.4.2 加载影像

3.4.3 地面实测数据

3.4.4 假设条件

3.4.5 回归分析

3.4.6 数字制图

图片

第四章 农作物胁迫信息提取理论与实践

4.1 异常因素胁迫——异常信息提取技术

4.1.1 理论与方法

4.1.2 加载影像

4.1.3 建立遮掩层

4.1.4 异常信息提取流程

4.1.5 数字制图

图片

 

4.2 病虫害——农作物胁迫信息提取技术

4.2.1 理论与方法

4.2.2 加载影像

4.2.3 胁迫提取

4.2.4 数字制图

图片

4.3 作物衰老——森林健康提取技术

4.3.1 理论与方法

4.3.1 加载影像

4.3.3 衰老信息提取

4.3.4 数字制图

图片

第五章 农作物产量信息提取理论与实践

5.1 净同化率——面向对象图谱合一提取技术

5.1.1 理论与方法

5.1.2 加载数据

5.1.3 地面实测数据

5.1.4 建立基于样本的规则

5.1.5 农田分割与合并

5.1.6 特征提取                           

5.1.7 数字制图

图片

   

5.2 蛋白质含量——多指数决策树技术

   5.2.1 理论与方法

   5.2.2 加载数据

   5.2.3 地面实测数据

   5.2.4 作物多种指数计算

   5.2.5 采集指数数据

   5.2.6 建立决策树

   5.2.7 运行决策树

                          

图片

5.3 生物量——人工智能信息提取技术

5.3.1 理论与方法

5.3.2 数据集说明

5.3.3 上传数据

5.3.4 图片标注

5.3.5 模型训练

5.3.6 校验模型

5.3.7 识别未知生物量图片

图片

第六章:遥感提取结果的空间表达——GIS制图流程

1 地理信息系统的基本概念

2 ArcGIS应用

(1)创建新地图文档

(2)地图与图层操作

(3)ToolBox内容简介

3 遥感结果数据的采集与组织

(1)创建shapefile文件

(2)创建Geodatabase数据库

(3)数据编辑

(4)遥感结果数据投影变换

(5)数据翻转、移动与扭曲

(6)数据裁切、拼接、提取

4 空间数据综合制图

(1)数据符号化

(2)编制一景高质量的专题地图

 

图片

原文链接:

https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247648652&idx=5&sn=ab1513f290d0928c56352723e353ac3e&chksm=fa77dab1cd0053a734ef6e5c7664ca69f7c00c9b18d19d7ddb40209d8821b33c33b1659aaa74&token=1021010374&lang=zh_CN&scene=21#wechat_redirect

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/272335.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

“色狼”用英语怎么说?柯桥日常英语,成人英语口语学习

最近有粉丝问我"色狼"英文翻译是啥 首先声明不是"colour wolf"哈 关于“色狼”的英文表达有很多 快和C姐一起来看看吧! 1.pervert 这个单词的意思是变态、色狼 是对性变态者最直观的描述 He is such a pervert! I saw him lo…

C# 视频转图片

在 C# 中将视频转换为图像可以使用 FFmpeg 库。下面是一个示例代码来完成这个任务: using System; using System.Diagnostics;class Program {static void Main(string[] args){string inputFile "input_video.mp4"; // 输入的视频文件路径string outpu…

C# SwinV2 Stable Diffusion 提示词反推 Onnx Demo

目录 介绍 效果 CPU GPU 模型信息 项目 代码 下载 C# SwinV2 Stable Diffusion 提示词反推 Onnx Demo 介绍 模型出处github地址:https://github.com/SmilingWolf/SW-CV-ModelZoo 模型下载地址:https://huggingface.co/SmilingWolf/wd-v1-4-s…

计算机网络之传输层 + 应用层

.1 CIDR地址块中还有三个特殊的地址块 a. 前缀 n 32 , 即32位IP地址都是前缀, 没有主机号, 这其实就是一个IP地址, 用于主机路由 b. 前缀 n 31 , 这个地址块中有两个IP地址, 主机号分别为0/1 , 这个地址块用于点对点链路 c. 前缀 n 0 , 用于默认路由使用二叉线索树查找转发…

办公电脑换成MacBookPro半年之后……

小白是从2008年开始接触电脑的,当时朋友给我注册的第一个QQ账号是2008年4月。 从此,小白一直认为电脑全部都是Windows系统。直到上大学那年,看到了外教老师的MacBookPro…… 折腾电脑的开始居然是起源于诺基亚手机,给半智能S40的…

根据QQ号获取暗恋的人的全部歌单

文章目录 前言一、成果展示二、后端开发流程三、前后端障碍与难点解决四、待扩展内容五、总结 前言 本人喜欢使用QQ音乐听歌,并且喜欢点击好友栏目观看最近在听,了解暗恋的人最近在听什么歌曲,知己知彼,百战不殆。但是每次都需要…

Ainx的消息封装

📕作者简介: 过去日记,致力于Java、GoLang,Rust等多种编程语言,热爱技术,喜欢游戏的博主。 📗本文收录于Ainx系列,大家有兴趣的可以看一看 📘相关专栏Rust初阶教程、go语言基础系列…

【排序算法】深入理解归并排序算法:从原理到实现

目录 1. 引言 2. 归并排序算法原理 3. 归并排序的时间复杂度分析 4. 归并排序的应用场景 5. 归并排序的优缺点分析 5.1 优点: 5.2 缺点: 6. Java、JavaScript 和 Python 实现归并排序算法 6.1 Java 实现: 6.2 JavaScript 实现&…

OpenCV 4基础篇| OpenCV图像的裁切

目录 1. Numpy切片1.1 注意事项1.2 代码示例 2. cv2.selectROI()2.1 语法结构2.2 注意事项2.3 代码示例 3. Pillow.crop3.1 语法结构3.2 注意事项3.3 代码示例 4. 扩展示例:单张大图裁切成多张小图5. 总结 1. Numpy切片 语法结构: retval img[y:yh, x…

Vue开发实例(六)实现左侧菜单导航

左侧菜单导航 一、一级菜单二、二级菜单三、三级菜单1、加入相关事件 四、菜单点击跳转1. 创建新页面2. 配置路由3. 菜单中加入路由配置4、处理默认的Main窗口为空的情况 五、动态左侧菜单导航1、动态实现一级菜单2、动态实现二级菜单 一、一级菜单 在之前的Aside.vue中去实现…

C#实现快速排序算法

C#实现快速排序算法 以下是C#中的快速排序算法实现示例: using System;class QuickSort {// 快速排序入口函数public static void Sort(int[] array){QuickSortRecursive(array, 0, array.Length - 1);}// 递归函数实现快速排序private static void QuickSortRecu…

结合大象机器人六轴协作机械臂myCobot 280 ,解决特定的自动化任务和挑战!(上)

项目简介 本项目致力于探索和实现一种高度集成的机器人系统,旨在通过结合现代机器人操作系统(ROS)和先进的硬件组件,解决特定的自动化任务和挑战。一部分是基于Jetson Orin主板的LIMO PPRO SLAM雷达小车,它具备自主导航…

2.Rust变量

变量的声明 let关键字 在Rust中变量必须要先声明才能使用,let关键字用于声明变量并将一个值绑定到该变量上。如下: fn main() {let var_name:i32 123123;println!("{}",var_name) //println! 是一个宏(macros),可以…

C#与欧姆龙PLC实现CIP通讯

参考文档: 欧姆龙PLC使用-CSDN博客 CIP通讯介绍(欧姆龙PLC)-CSDN博客 使用NuGet添加引用:CIPCompolet 基础参考我的CIP协议介绍,默认TCP端口为:44818 类NXCompolet 类的功能可以在安装PLC开发软件后帮…

【Transformer】single self-attention的理解与计算步骤

参考B站Enzo_Mi老师 【self-Attention|自注意力机制 |位置编码 | 理论 代码】https://www.bilibili.com/video/BV1qo4y1F7Ep?vd_source19425b683f74eeac34bde8ddf968a0d6 建议大家去看老师的原视频,讲解非常清晰,这里…

类和对象-继承

师从黑马程序员 基本语法 有些类与类之间存在特殊的关系,例如: 定义这些类时,下一级别的成员除了拥有上一级的共性,还有自己的特性。 这时候我们就可以考虑继承技术,减少重复代码 语法:class 子类&…

【鸿蒙 HarmonyOS 4.0】应用状态:LocalStorage/AppStorage/PersistentStorage

一、介绍 如果要实现应用级的,或者多个页面的状态数据共享,就需要用到应用级别的状态管理的概念。 LocalStorage:页面级UI状态存储,通常用于UIAbility内、页面间的状态共享。AppStorage:特殊的单例LocalStorage对象&…

Android Studio下载gradle超时问题解决

方法一 1. 配置根目录的setting.gradle.kts文件 pluginManagement {repositories {maven { urluri ("https://www.jitpack.io")}maven { urluri ("https://maven.aliyun.com/repository/releases")}maven { urluri ("https://maven.aliyun.com/repos…

【Pytorch、torchvision、CUDA 各个版本对应关系以及安装指令】

Pytorch、torchvision、CUDA 各个版本对应关系以及安装指令 1、名词解释 1.1 CUDA CUDA(Compute Unified Device Architecture)是由NVIDIA开发的用于并行计算的平台和编程模型。CUDA旨在利用NVIDIA GPU(图形处理单元)的强大计算…

SpringCloudGateway全局过滤器

文章目录 全局过滤器的作用自定义全局过滤器过滤器执行的顺序 上一篇 Gateway理论与实践 介绍的过滤器,网关提供了31种,但每一种过滤器的作用都是固定的。如果我们希望拦截请求,做自己的业务逻辑则没办法实现。 全局过滤器的作用 全局过滤器的…