如何实现sam(Segment Anything Model)|fastsam模型

sam是2023年提出的一个在图像分割领域的大模型,其具备了对任意现实数据的分割能力,其论文的介绍可以参考 https://hpg123.blog.csdn.net/article/details/131137939,sam的亮点在于提出一种工作模式,同时将多形式的prompt集成到了语义分割中,其网络结构并没有特殊设计。拓展sam所发展的mobile-sam只是对sam项目中图像编码器的优化,并未在技术提出显著的亮点。故而对sam工作模式进行深入分析,主要深入分析sam的模型设计范式、数据标签范式、fast-sam模型训练范式。
sam的试用地址为:https://segment-anything.com/demo

本博文主要参考资料来自:https://hpg123.blog.csdn.net/article/details/131137939、https://hpg123.blog.csdn.net/article/details/131234476、https://hpg123.blog.csdn.net/article/details/131194434

通过本博文的查阅与分析,实现fastsam是较为简便的,且fastsam的性能可以随着全景实例分割模型的发展而进一步提升,同时也说明了fastsam中prompt的实现。而在sam中,各种实现较为生涩难懂,主要说明sam的模型结构,基本原理,数据生成范式。sam的亮点在于基于少量的语义分割标签,迭代出了一个1.1B 标签超大型数据集,其不断扩展标注数据量的思想是值得学习的;而在fastsam中则是对SAT重新定义得出SAT,基于对全景实例分割模型的后处理实现了类似sam的性能。从sam到fastsam所透露的是数据伪标签拓展的重要性,没有sam发布的数据集,fastsam是无法达到预期性能的。

1、模型设计范式

1.1 sam范式分析

根据论文给出的图表来看,sam的输入包含2部分,原始图片与Prompt(mask、point、boxes、text其中text是基于clip进行编码直接输入)。
在这里插入图片描述
从sam发布的代码来看,其prompt仅包含mask、point、boxes,且三者处于等价地位(同时其官网也未提供基于text的解码)。由代码所得出的sam模型体系如下所示,具体为3个步骤:1.图像编码、2.promp编码、3. 根据promp编码对图像进行解码操作。在mobilenet中完全延用了sam的范式,只是对image_encoder进行了一个蒸馏,从而实现了性能的提升 ; 在fast-sam中只是正式提出将SAT分解为2阶段,第一阶段为对输入图像的全景实例分割,第二阶段为根据提示输入对全景实例分割结果进行稀疏化选择
在这里插入图片描述

在mobilesam论文给出的sam结构图中,可以看出sam模型的主要参数在图像编码器中,而在prompt部分较少
在这里插入图片描述

1.2 图像编码器简介

在sam中使用ImageEncoderViT作为图像编码器,其性能饱和慢随着数据增长,精度可持续增长,用到了1100万的训练图片。原始ViT也是在 ImageNet、ImageNet-21k和JFT- 300M进行训练,并表明JFT-300M效果更好。sam中的Vit与原始模型有细微差异,其输入shape为3x1024x1024,输出的feature map为256x64x64。 这里可以透露出sam最多分割256个mask,这样子设计或许与mask图像uint8的表示范围有关

补偿知识:
1、mobile-sam使用解耦蒸馏方法(只对图像编码器进行蒸馏),使backbone与原始的解码器相适应,整个训练在一个GPU上不到一天,将编码器参数减少100倍,总参数减少60倍。
2、mobile-sam蒸馏后的图像编码器运行为8 ms,mask解码器运行为2 ms,总体运行时间为10ms,比FastSAM快4倍。
3、mobile-sam其基于conv和transformer设计了轻量化的图像编码器;同时,为了加快训练,保存了教师模型预测的特征编码,减少了知识蒸馏中教师模型forward的时间。

1.3 PromptEncoder简介

PromptEncoder属于轻量化的结构,用于对输入模型的points、boxes和masks信息进行编码,将其统一为空间特征编码的格式。其对points、boxes和masks编码时允许有部分值空缺(空缺使用默认值),其将points和boxes组装为sparse_embeddings将mask组装为dense_embeddings 其对mask的采样由多个attention层实现,具体可见mask_downscaling函数。
在这里插入图片描述
PromptEncoder将points、boxes编码为sparse_embeddings拼接在一起,将mask编码为dense_embeddings;同时允许任意prompt输入为空

1.4 MaskDecoder说明

MaskDecoder是sam的核心部分,用于根据输入给出预期输出。其核心代码为predict_masks函数,输入包含
image_embeddings、image_pe、sparse_prompt_embeddings、dense_prompt_embeddings,

在这个过程中代表mask的dense_prompt_embeddings与image_embeddings直接作用,对应的输出经过TwoWayTransformer后变为了mask_tokens_out

代表box与point的sparse_prompt_embeddings与iou_token直接作用,对应的输出经过TwoWayTransformer后变为了iou_token_out .

最后由IOU预测模块,输出每个mask的iou

MaskDecoder的本质就是根据图像编码与prompt编码输出mask与iou得分(基于输出的mask、iou得分,或许可以与标签mask、标签iou得分进行训练),至于为什么计较这么复杂,博主尚未理清楚。或许参考fast-sam的实现可以理通,但从mobile的实现思路来看是可以规避这个问题(直接使用sam的MaskDecoder)。
在这里插入图片描述

2、数据标签范式

2.1 Segment Anything Dataset

sam提出了数据集Segment Anything Dataset,其中包含由1100万多样化、高分辨率、许可和隐私保护图像(平均像素3300×4950),并包含1.1B高质量分割掩码(其中99.1%是完全自动生成的;并抽取了500个图【50k个mask】进行了人工验证,94%的图像对IoU大于90%(97%的对的IoU大于75%))。

sad的数据分布特性如下所示,大部分数据的mask数量处于50~200个。
在这里插入图片描述

2.2 SAD数据引擎

Segment Anything Data Engine分为三个阶段: (1)模型辅助手动标注阶段,(2)包含自动预测掩码和模型辅助标注的半自动阶段,(3)全自动阶段,在此阶段中,我们的模型生成掩码而无需标注器输入;最终生成Segment Anything Dataset。

辅助手动阶段:类似于经典的交互式分割,通过点击前景/背景对象点来标记掩码,要求按突出程度的顺序标记物体,自动生成mask。mask可以使用像素精确的“笔刷”和“橡皮擦”工具来改进。

同时,SAM使用常见的公共分割数据集进行训练。在进行足够的数据标注后,只使用新标注的掩码进行重新训练。随着更多的掩模被收集到,图像编码器从ViT-B缩放到ViT-H,同时训练细节随着模型调整不断优化。总共对模型进行了6次再训练。随着模型的改进,每个mask的平均标注时间从34秒减少到14秒; 每幅图像的平均掩模数量从20个增加到44个; 从12万张图像中收集了430万个mask

该阶段,要求已经具备类似sam的模型能根据prompt进行初级的语义分割能力,只是类sam模型预测的结果有待人工优化。

半自动阶段: 在这个阶段,目标是增加mask的多样性,以提高模型分割任何东西的能力。为了将标注器集中在不太突出的对象上,首先自动检测到较为突出的mask。然后,我们提供了预先填充了这些掩码的图像的标注器,并要求它们标注任何其他未标注的对象。

为了检测突出的掩模,将第一阶段所有的mask都整理成目标检测标签,类别为“object”,训练了一个边界框检测器[84]。然后要求检测器自动检测出突出的mask的boxes,然后根据boxes重新进行mask生成在这一阶段,在18万张图像中收集了额外5.9M的mask(总共有10.2M的mask)

与第一阶段一样,定期使用新收集的数据重新训练模型(5次),该操作使mask数量从44个增加到72个(包括自动mask)

该阶段,主要目的就是泛化检测模型对突出物体的检测能力,找到未标注区域、泛化sam对未标注区域的标签生成能力。先基于检测模型找到待标注的显著区域,然后使用模型生成伪标签,不断扩展数据的mask数量,同时相比于第一阶段,补充了6万个数据

全自动阶段:
该阶段有两个主要的增强,1:mask足够充分,2、设计了模糊感知模型,它允许在模糊情况下预测出有效mask。

该阶段已经使用了sam的自动分割功能,用一个32×32规则点网格提示模型,为每个点预测一组可能对应于有效对象的掩模上一个阶段使用检测模型进行标注。如果点位于一个部分或子部分上,模糊感知模型将返回该子部分、部件和整个对象。模型的IoU预测模块用于选择自信的掩模;此外,只识别和选择稳定的mask。最后,在选择了自信和稳定的掩模后,应用非最大抑制(NMS)来过滤多余mask。

trick1:为了进一步提高较小掩模的质量,处理了多个重叠的放大图像crop。有关此阶段的详细信息

对数据集中的所有11M幅图像应用了全自动掩模生成,总共产生了1.1B个高质量的掩模。

3、fast-sam模型训练范式

sam只是对Segment Anything进行了一个初步的定义,描述了其是如何基于0.9%的人工数据标签生成100%的数据,并未讲述其对sad数据集的再训练。
fast-sam项目地址为:https://github.com/CASIA-IVA-Lab/FastSAM
fast-sam demo地址为:https://huggingface.co/spaces/An-619/FastSAM

3.1 Segment Anything Task定义

FastSAM定义Segment Anything Task(SAT)为根据提示进行语义分割任务,提示指:前景|背景点、bounding boxes、mask、text;

FastSAM将SAT分解为2阶段,第一阶段为对输入图像的全景实例分割,第二阶段为根据提示输入对全景实例分割结果进行稀疏化选择。其能如此实现,主要是sad完成了数据mask从稀疏到全景的标注

3.2 fast-sam实现

fast-sam由yolov8-seg(全景实例分割)+Prompt-guided-Selection模块组成,从其结构图中可以看到两个模块是可以孤立训练的。

在这里插入图片描述
这里以ultralytics中对fast-sam的实现为基准,可以看到FastSAM就是对yolov8模型的继承,这里的FastSAM只是一个通用的全景实例分割模型。

# Ultralytics YOLO 🚀, AGPL-3.0 licensefrom pathlib import Path
from ultralytics.engine.model import Model
from .predict import FastSAMPredictor
from .val import FastSAMValidator
class FastSAM(Model):"""FastSAM model interface.Example:```pythonfrom ultralytics import FastSAMmodel = FastSAM('last.pt')results = model.predict('ultralytics/assets/bus.jpg')```"""def __init__(self, model='FastSAM-x.pt'):"""Call the __init__ method of the parent class (YOLO) with the updated default model."""if str(model) == 'FastSAM.pt':model = 'FastSAM-x.pt'assert Path(model).suffix not in ('.yaml', '.yml'), 'FastSAM models only support pre-trained models.'super().__init__(model=model, task='segment')@propertydef task_map(self):"""Returns a dictionary mapping segment task to corresponding predictor and validator classes."""return {'segment': {'predictor': FastSAMPredictor, 'validator': FastSAMValidator}}

其使用代码如下所示,先由FastSAM分割出全景mask,再由FastSAMPrompt根据输入提示筛选mask


from fastsam import FastSAM, FastSAMPrompt
import torch model = FastSAM('FastSAM.pt')
IMAGE_PATH = './images/dogs.jpg'
DEVICE = torch.device("cuda"if torch.cuda.is_available()else "mps"if torch.backends.mps.is_available()else "cpu"
)
everything_results = model(IMAGE_PATH,device=DEVICE,retina_masks=True,imgsz=1024,conf=0.4,iou=0.9,
)
prompt_process = FastSAMPrompt(IMAGE_PATH, everything_results, device=DEVICE)# # everything prompt
ann = prompt_process.everything_prompt()  #这里就是everything_results# # bbox prompt
# # bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
# bboxes default shape [[0,0,0,0]] -> [[x1,y1,x2,y2]]
# ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
# ann = prompt_process.box_prompt(bboxes=[[200, 200, 300, 300], [500, 500, 600, 600]])# # text prompt
# ann = prompt_process.text_prompt(text='a photo of a dog')# # point prompt
# # points default [[0,0]] [[x1,y1],[x2,y2]]
# # point_label default [0] [1,0] 0:background, 1:foreground
# ann = prompt_process.point_prompt(points=[[620, 360]], pointlabel=[1])# point prompt
# points default [[0,0]] [[x1,y1],[x2,y2]]
# point_label default [0] [1,0] 0:background, 1:foreground
ann = prompt_process.point_prompt(points=[[620, 360]], pointlabel=[1])prompt_process.plot(annotations=ann,output='./output/',mask_random_color=True,better_quality=True,retina=False,withContours=True,
)

3.3 FastSAMPrompt

FastSAMPrompt是fastsam的核心,其用于根据prompt从现有全景分割结果中遴选出目标mask。其本身不带任何可训练参数,从代码上看其仅支持point、box、text形式的prompt不支持mask嵌入

bbox prompt

实现代码如下所示,代码行数较多,以博主的理解就是根据bbox 生成mask,然后计算与全景分割所有mask的iou,然后找出iou最大的进行输出。因此,这里输入bbox ,只会输出一个mask。

def box_prompt(self, bbox):"""Modifies the bounding box properties and calculates IoU between masks and bounding box."""if self.results[0].masks is not None:assert (bbox[2] != 0 and bbox[3] != 0)if os.path.isdir(self.source):raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")masks = self.results[0].masks.datatarget_height, target_width = self.results[0].orig_shapeh = masks.shape[1]w = masks.shape[2]if h != target_height or w != target_width:bbox = [int(bbox[0] * w / target_width),int(bbox[1] * h / target_height),int(bbox[2] * w / target_width),int(bbox[3] * h / target_height), ]bbox[0] = max(round(bbox[0]), 0)bbox[1] = max(round(bbox[1]), 0)bbox[2] = min(round(bbox[2]), w)bbox[3] = min(round(bbox[3]), h)# IoUs = torch.zeros(len(masks), dtype=torch.float32)bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])masks_area = torch.sum(masks[:, bbox[1]:bbox[3], bbox[0]:bbox[2]], dim=(1, 2))orig_masks_area = torch.sum(masks, dim=(1, 2))union = bbox_area + orig_masks_area - masks_areaiou = masks_area / unionmax_iou_index = torch.argmax(iou)self.results[0].masks.data = torch.tensor(np.array([masks[max_iou_index].cpu().numpy()]))return self.results

point prompt
point 的实现代码如下所示,其本质就是遍历所有全景分割mask,将point正例所击中的mask添加到onemask 中,将point负例所击中的mask从onemask 中删除,然后返回onemask

    def point_prompt(self, points, pointlabel):  # numpy"""Adjusts points on detected masks based on user input and returns the modified results."""if self.results[0].masks is not None:if os.path.isdir(self.source):raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")masks = self._format_results(self.results[0], 0)target_height, target_width = self.results[0].orig_shapeh = masks[0]['segmentation'].shape[0]w = masks[0]['segmentation'].shape[1]if h != target_height or w != target_width:points = [[int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points]onemask = np.zeros((h, w))for annotation in masks:mask = annotation['segmentation'] if isinstance(annotation, dict) else annotationfor i, point in enumerate(points):if mask[point[1], point[0]] == 1 and pointlabel[i] == 1:onemask += maskif mask[point[1], point[0]] == 1 and pointlabel[i] == 0:onemask -= maskonemask = onemask >= 1self.results[0].masks.data = torch.tensor(np.array([onemask]))return self.results

text prompt
相关代码如下所示,关键函数为retrieve。其先使用_crop_image将全景实例分割中mask对应的图片全部crop出来,然后使用clip分别计算出mask crop与tokenized_text 的余弦相似度,最后找出余弦相似度大于阈值的mask即可。

    def text_prompt(self, text):"""Processes a text prompt, applies it to existing results and returns the updated results."""if self.results[0].masks is not None:format_results = self._format_results(self.results[0], 0)cropped_boxes, cropped_images, not_crop, filter_id, annotations = self._crop_image(format_results)clip_model, preprocess = self.clip.load('ViT-B/32', device=self.device)scores = self.retrieve(clip_model, preprocess, cropped_boxes, text, device=self.device)max_idx = scores.argsort()max_idx = max_idx[-1]max_idx += sum(np.array(filter_id) <= int(max_idx))self.results[0].masks.data = torch.tensor(np.array([annotations[max_idx]['segmentation']]))return self.results@torch.no_grad()def retrieve(self, model, preprocess, elements, search_text: str, device) -> int:"""Processes images and text with a model, calculates similarity, and returns softmax score."""preprocessed_images = [preprocess(image).to(device) for image in elements]tokenized_text = self.clip.tokenize([search_text]).to(device)stacked_images = torch.stack(preprocessed_images)image_features = model.encode_image(stacked_images)text_features = model.encode_text(tokenized_text)image_features /= image_features.norm(dim=-1, keepdim=True) #先除模text_features /= text_features.norm(dim=-1, keepdim=True) #先除模probs = 100.0 * image_features @ text_features.T #再做乘法,实现余弦相似度计算return probs[:, 0].softmax(dim=0)def _crop_image(self, format_results):"""Crops an image based on provided annotation format and returns cropped images and related data."""if os.path.isdir(self.source):raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")image = Image.fromarray(cv2.cvtColor(self.results[0].orig_img, cv2.COLOR_BGR2RGB))ori_w, ori_h = image.sizeannotations = format_resultsmask_h, mask_w = annotations[0]['segmentation'].shapeif ori_w != mask_w or ori_h != mask_h:image = image.resize((mask_w, mask_h))cropped_boxes = []cropped_images = []not_crop = []filter_id = []for _, mask in enumerate(annotations):if np.sum(mask['segmentation']) <= 100:filter_id.append(_)continuebbox = self._get_bbox_from_mask(mask['segmentation'])  # mask 的 bboxcropped_boxes.append(self._segment_image(image, bbox))  # 保存裁剪的图片cropped_images.append(bbox)  # 保存裁剪的图片的bboxreturn cropped_boxes, cropped_images, not_crop, filter_id, annotations

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/275186.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【漏洞复现】网康科技 NS-ASG 应用安全网关 SQL注入漏洞(CVE-2024-2330)

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

Spring学习 基础(三)MVC

5、Spring MVC 传统Web模式&#xff1a; Model:系统涉及的数据&#xff0c;也就是 dao 和 bean。View&#xff1a;展示模型中的数据&#xff0c;只是用来展示。Controller&#xff1a;处理用户请求都发送给 &#xff0c;返回数据给 JSP 并展示给用户。 随着 Spring 轻量级开发…

Python逆向:pyc字节码转py文件

一、 工具准备 反编译工具&#xff1a;pycdc.exe 十六进制编辑器&#xff1a;010editor 二、字节码文件转换 在CTF中&#xff0c;有时候会得到一串十六进制文件&#xff0c;通过010editor使用查看后&#xff0c;怀疑可能是python的字节码文件。 三、逆向反编译 将010editor得到…

【Redis】redis持久化

redis 持久化 Redis是内存数据库&#xff0c;数据都是存储在内存中&#xff0c;为了避免进程退出导致数据的永久丢失&#xff0c;需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘&#xff1b;当下次Redis重启时&#xff0c;利用持久化文件实现数据恢复。除此之…

前端性能优化 | CDN缓存

前言 CDN&#xff08;Content Delivery Network&#xff09;是一种分布式的网络架构&#xff0c;通过在全球各地部署节点服务器来快速传输和分发网络内容。CDN的主要目标是提供快速、可靠的内容传输&#xff0c;以提升用户体验。 本文主要从以下方面讲解CDN 什么是CDNCDN的作…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的木材表面缺陷检测系统(深度学习+Python代码+UI界面+训练数据集)

摘要&#xff1a;开发高效的木材表面缺陷检测系统对于提升木材加工行业的质量控制和生产效率至关重要。本篇博客详细介绍了如何运用深度学习技术构建一个木材表面缺陷检测系统&#xff0c;并提供了完整的实现代码。该系统采用了强大的YOLOv8算法&#xff0c;并对YOLOv7、YOLOv6…

十六、接口隔离原则、反射、依赖注入

接口隔离原则、反射、特性、依赖注入 接口隔离原则 客户端不应该依赖它不需要的接口&#xff1b;一个类对另一个类的依赖应该建立在最小的接口上。 五种原则当中的i 上一章中的接口&#xff0c;即契约。 契约就是在说两件事&#xff0c;甲方说自己不会多要&#xff0c;乙方会在…

如何轻松打造属于自己的水印相机小程序?

水印相机小程序源码 描述&#xff1a;微信小程序。本文将为您详细介绍小程序水印相机源码的搭建过程&#xff0c;教您如何轻松打造属于自己的水印相机小程序。无论您是初学者还是有一定基础的开发者&#xff0c;都能轻松掌握这个教程。 一&#xff1a;水印相机搭建教程 1 隐…

JS ATM练习案例(复习循环知识)

需求&#xff1a;用户可以选择存钱、取钱、查看余额和退出功能。 分析&#xff1a;1循环时反复出现提示框&#xff0c;所以提示框写到循环里面。 2.退出的条件是4&#xff0c;所以是4就会结束循环 3.提前准备一个金额预存储 4取钱为减法操作&#xff0c;存钱为加法操作&#xf…

【Linux】-Linux下的软件商店yum工具介绍(linux和windows互传文件仅仅一个拖拽搞定!!!!)

目录 1.Linux 软件包管理器yum 1.1快速认识yum 1.2 yumz下载方式&#xff08;如何使用yum进行下载&#xff0c;注意下载一定要是root用户或者白名单用户&#xff08;可提权&#xff09;&#xff09; 1.2.1下载小工具rzsz 1.2.2 rzsz使用 1.2.2查看软件包 1.3软件的卸载 2.yum生…

【考研数学】打基础用张宇《30讲》还是武忠祥《基础篇》?

基础课不太可能所有的东西全都覆盖&#xff0c;还是先搭起一个知识框架&#xff0c;然后不断的填充和完善。 所以不必太过于在意少一些东西&#xff0c;我们不可能一口吃成胖子&#xff0c;基础知识肯定不会遗漏的&#xff0c;只可能一些技巧不到位。 从自己的情况考虑&#…

(BAT向)Java岗常问高频面试汇总:MyBatis 微服务 Spring 分布式 MySQL等

看面试题可以是为了面试&#xff0c;也可以是对自己学到的东西的一种查漏补缺&#xff0c;更加深刻的去了解一些核心知识点 Spring面试高频问题 问题一&#xff1a;谈 需要zi料 绿色徽【vip1024b】 谈你对spring IOC 和 DI 的理解&#xff0c;它们有什么区别&#xff1f; **问题…

一文掌握mysql中的查询语句

目录 1. 聚合查询1.1 聚合函数1.2 GROUP BY子句1.3 HAVING 2. 联合查询2.1 内连接2.2 外连接2.3 自连接2.4 子查询2.5 合并查询 1. 聚合查询 1.1 聚合函数 常见的统计总数、计算平局值等操作&#xff0c;可以使用聚合函数来实现&#xff0c;常见的聚合函数有&#xff1a; 函…

Autosar教程-Mcal教程-GPT配置教程

3.3GPT配置、生成 3.3.1 GPT配置所需要的元素 GPT实际上就是硬件定时器,需要配置的元素有: 1)定时器时钟:定时器要工作需要使能它的时钟源 2)定时器分步:时钟源进到定时器后可以通过分频后再给到定时器 定时器模块选择:MCU有多个定时器模块,需要决定使用哪个定时器模块作…

【Web】浅聊XStream反序列化本源之恶意动态代理注入

目录 简介 原理 复现 具体分析之前 我们反序列化了个什么&#xff1f; XStream反序列化的朴素通识 具体分析 第一步&#xff1a;unmarshal解组 第二步&#xff1a;readClassType获取动态代理类的Class对象 第三步&#xff1a;调用convertAnother对动态代理类进行实例…

【阿里云系列】-基于云效构建部署Springboot项目到ACK

介绍 为了提高项目迭代的速度加速交付产品给客户&#xff0c;我们通常会选择CICD工具来减少人力投入产生的成本&#xff0c;开源的工具比如有成熟的Jenkins&#xff0c;但是本文讲的是阿里云提高的解决方案云效平台&#xff0c;通过配置流水线的形式实现项目的快速部署到服务器…

c++0305习题

一、求下面表达式的值 1&#xff0e;0 2&#xff0e;-1 3&#xff0e;1 4&#xff0e;&#xff08;1&#xff09;1 &#xff08;2&#xff09;3.2 &#xff08;3&#xff09;0 &#xff08;4&#xff09;7.0 5.&#xff08;1&#xff09;0&#xff08;2&#xff09;300.005&a…

Codeforces Round 933 (Div. 3) A~D

比赛链接 : codeforces.com/contest/1941 A . Rudolf and the Ticket 直接暴力即可 ; #include<bits/stdc.h> #define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0); #define endl \n #define lowbit(x) (x&(-x)) #define sz(a) (int)a.size() #define p…

蓝桥杯之【01背包模版】牛客例题展示

牛客链接 #include <bits/stdc.h> using namespace std; int n,V; const int N1010; int v[N],w[N]; int dp[N][N]; int main() {cin>>n>>V;for(int i1;i<n;i){cin>>v[i]>>w[i];}for(int i1;i<n;i){for(int j1;j<V;j){dp[i][j]dp[i-1][…

30天学会QT(进阶)--------------第二天(创建项目)

1、如何规范的创建一个项目 由于本人也是从其他的项目上学来的&#xff0c;所以也不算是业界规范&#xff0c;每个公司或者个人都有自己的方式去创建项目&#xff0c;项目的创建是本着简洁&#xff0c;明了&#xff0c;方便而言的&#xff0c;所以对于我来说&#xff0c;不繁琐…