YOLOv8_pose-Openvino和ONNXRuntime推理【CPU】

纯检测系列
YOLOv5-Openvino和ONNXRuntime推理【CPU】
YOLOv6-Openvino和ONNXRuntime推理【CPU】
YOLOv8-Openvino和ONNXRuntime推理【CPU】
YOLOv7-Openvino和ONNXRuntime推理【CPU】
YOLOv9-Openvino和ONNXRuntime推理【CPU】
跟踪系列
YOLOv5/6/7-Openvino-ByteTrack【CPU】
YOLOv8/9-Openvino-ByteTrack【CPU】
分割系列
YOLOv5_seg-Openvino和ONNXRuntime推理【CPU】
YOLOv8_seg-Openvino和ONNXRuntime推理【CPU】
关键点系列
YOLOv7_pose-Openvino和ONNXRuntime推理【CPU】
YOLOv8_pose-Openvino和ONNXRuntime推理【CPU】

注:YOLOv5、YOLOv6和YOLOv7代码内容基本一致!YOLOv8和YOLOv9代码内容基本一致!
全部代码Github:https://github.com/Bigtuo/YOLOv8_Openvino

1 环境:

CPU:i5-12500
Python:3.8.18

2 安装Openvino和ONNXRuntime

2.1 Openvino简介

Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包,主要用于对深度推理做优化。

Openvino内部集成了Opencv、TensorFlow模块,除此之外它还具有强大的Plugin开发框架,允许开发者在Openvino之上对推理过程做优化。

Openvino整体框架为:Openvino前端→ Plugin中间层→ Backend后端
Openvino的优点在于它屏蔽了后端接口,提供了统一操作的前端API,开发者可以无需关心后端的实现,例如后端可以是TensorFlow、Keras、ARM-NN,通过Plugin提供给前端接口调用,也就意味着一套代码在Openvino之上可以运行在多个推理引擎之上,Openvino像是类似聚合一样的开发包。

2.2 ONNXRuntime简介

ONNXRuntime是微软推出的一款推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持。

虽然大家用ONNX时更多的是作为一个中间表示,从pytorch转到onnx后直接喂到TensorRT或MNN等各种后端框架,但这并不能否认ONNXRuntime是一款非常优秀的推理框架。而且由于其自身只包含推理功能(最新的ONNXRuntime甚至已经可以训练),通过阅读其源码可以解深度学习框架的一些核心功能原理(op注册,内存管理,运行逻辑等)
总体来看,整个ONNXRuntime的运行可以分为三个阶段,Session构造,模型加载与初始化和运行。和其他所有主流框架相同,ONNXRuntime最常用的语言是python,而实际负责执行框架运行的则是C++。

2.3 安装

pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime -i  https://pypi.tuna.tsinghua.edu.cn/simple

3 YOLOv8介绍

YOLOv8官网
YOLOv8原理

4 基于Openvino和ONNXRuntime推理

下面代码整个处理过程主要包括:预处理—>推理—>后处理—>画图(矩形框和关键点)。
假设图像resize为640×640,
前处理输出结果维度:(1, 3, 640, 640);
推理输出结果维度:(1, 56, 8400),其中56表示4个box坐标信息+1个类别概率+17个关键点信息(x,y,visibility),8400表示80×80+40×40+20×20;
后处理输出结果维度:(-1, 56),其中第一个维度表示检测的目标数量,第二个维度56表示(x1, y1, x2, y2, conf, 17×3);

4.1 全部代码

import argparse
import time 
import cv2
import numpy as np
from openvino.runtime import Core  # pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
import onnxruntime as ort  # 使用onnxruntime推理用上,pip install onnxruntime,默认安装CPU# Pose默认的person类
CLASSES = ['person']class OpenvinoInference(object):def __init__(self, onnx_path):self.onnx_path = onnx_pathie = Core()self.model_onnx = ie.read_model(model=self.onnx_path)self.compiled_model_onnx = ie.compile_model(model=self.model_onnx, device_name="CPU")self.output_layer_onnx = self.compiled_model_onnx.output(0)def predict(self, datas):predict_data = self.compiled_model_onnx([datas])[self.output_layer_onnx]return predict_dataclass KeyPoint_draw(object):def __init__(self):# 定义一个调色板数组,其中每个元素是一个包含RGB值的列表,用于表示不同的颜色self.palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102],[230, 230, 0], [255, 153, 255], [153, 204, 255],[255, 102, 255], [255, 51, 255], [102, 178, 255],[51, 153, 255], [255, 153, 153], [255, 102, 102],[255, 51, 51], [153, 255, 153], [102, 255, 102],[51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0],[255, 255, 255]])# 定义人体17个关键点的连接顺序,每个子列表包含两个数字,代表要连接的关键点的索引, 1鼻子 2左眼 3右眼 4左耳 5右耳 6左肩 7右肩# 8左肘 9右肘 10左手腕 11右手腕 12左髋 13右髋 14左膝 15右膝 16左踝 17右踝self.skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12],[7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3],[1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]# 通过索引从调色板中选择颜色,用于绘制人体骨架的线条,每个索引对应一种颜色self.pose_limb_color = self.palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]# 通过索引从调色板中选择颜色,用于绘制人体的关键点,每个索引对应一种颜色self.pose_kpt_color = self.palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]def plot_skeleton_kpts(self, im, kpts, steps=3):num_kpts = len(kpts) // steps  # 51 / 3 =17# 画点for kid in range(num_kpts):r, g, b = self.pose_kpt_color[kid]x_coord, y_coord = kpts[steps * kid], kpts[steps * kid + 1]conf = kpts[steps * kid + 2]if conf > 0.5:  # 关键点的置信度必须大于 0.5cv2.circle(im, (int(x_coord), int(y_coord)), 10, (int(r), int(g), int(b)), -1)# 画骨架for sk_id, sk in enumerate(self.skeleton):r, g, b = self.pose_limb_color[sk_id]pos1 = (int(kpts[(sk[0] - 1) * steps]), int(kpts[(sk[0] - 1) * steps + 1]))pos2 = (int(kpts[(sk[1] - 1) * steps]), int(kpts[(sk[1] - 1) * steps + 1]))conf1 = kpts[(sk[0] - 1) * steps + 2]conf2 = kpts[(sk[1] - 1) * steps + 2]if conf1 > 0.5 and conf2 > 0.5:  # 对于肢体,相连的两个关键点置信度 必须同时大于 0.5cv2.line(im, pos1, pos2, (int(r), int(g), int(b)), thickness=2)class YOLOv8_pose:"""YOLOv8_pose detection model class for handling inference and visualization."""def __init__(self, onnx_model, imgsz=(640, 640), infer_tool='openvino'):"""Initialization.Args:onnx_model (str): Path to the ONNX model."""self.infer_tool = infer_toolif self.infer_tool == 'openvino':# 构建openvino推理引擎self.openvino = OpenvinoInference(onnx_model)self.ndtype = np.singleelse:# 构建onnxruntime推理引擎self.ort_session = ort.InferenceSession(onnx_model,providers=['CUDAExecutionProvider', 'CPUExecutionProvider']if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])# Numpy dtype: support both FP32 and FP16 onnx modelself.ndtype = np.half if self.ort_session.get_inputs()[0].type == 'tensor(float16)' else np.singleself.classes = CLASSES  # 加载模型类别self.model_height, self.model_width = imgsz[0], imgsz[1]  # 图像resize大小self.color = (0, 0, 255)  # 为类别生成调色板def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45):"""The whole pipeline: pre-process -> inference -> post-process.Args:im0 (Numpy.ndarray): original input image.conf_threshold (float): confidence threshold for filtering predictions.iou_threshold (float): iou threshold for NMS.Returns:boxes (List): list of bounding boxes."""# 前处理Pre-processt1 = time.time()im, ratio, (pad_w, pad_h) = self.preprocess(im0)print('预处理时间:{:.3f}s'.format(time.time() - t1))# 推理 inferencet2 = time.time()if self.infer_tool == 'openvino':preds = self.openvino.predict(im)else:preds = self.ort_session.run(None, {self.ort_session.get_inputs()[0].name: im})[0]print('推理时间:{:.2f}s'.format(time.time() - t2))# 后处理Post-processt3 = time.time()boxes = self.postprocess(preds,im0=im0,ratio=ratio,pad_w=pad_w,pad_h=pad_h,conf_threshold=conf_threshold,iou_threshold=iou_threshold,)print('后处理时间:{:.3f}s'.format(time.time() - t3))return boxes# 前处理,包括:resize, pad, HWC to CHW,BGR to RGB,归一化,增加维度CHW -> BCHWdef preprocess(self, img):"""Pre-processes the input image.Args:img (Numpy.ndarray): image about to be processed.Returns:img_process (Numpy.ndarray): image preprocessed for inference.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox."""# Resize and pad input image using letterbox() (Borrowed from Ultralytics)shape = img.shape[:2]  # original image shapenew_shape = (self.model_height, self.model_width)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])ratio = r, rnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh paddingif shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # 填充# Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0img_process = img[None] if len(img.shape) == 3 else imgreturn img_process, ratio, (pad_w, pad_h)# 后处理,包括:阈值过滤与NMSdef postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold):"""Post-process the prediction.Args:preds (Numpy.ndarray): predictions come from ort.session.run().im0 (Numpy.ndarray): [h, w, c] original input image.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox.conf_threshold (float): conf threshold.iou_threshold (float): iou threshold.Returns:boxes (List): list of bounding boxes."""x = preds  # outputs: predictions (1, 56, 8400),其中56=4+1+17*3,17个关键点(x,y,visibility)# Transpose the first output: (Batch_size, xywh_conf_pose, Num_anchors) -> (Batch_size, Num_anchors, xywh_conf_pose)x = np.einsum('bcn->bnc', x)  # (1, 8400, 56)# Predictions filtering by conf-thresholdx = x[x[..., 4] > conf_threshold]# Create a new matrix which merge these(box, score, pose) into one# For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.htmlx = np.c_[x[..., :4], x[..., 4], x[..., 5:]]# NMS filtering# 经过NMS后的值, np.array([[x, y, w, h, conf, pose], ...]), shape=(-1, 4 + 1 + 17*3)x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]# 重新缩放边界框,为画图做准备if len(x) > 0:# Bounding boxes format change: cxcywh -> xyxyx[..., [0, 1]] -= x[..., [2, 3]] / 2x[..., [2, 3]] += x[..., [0, 1]]# Rescales bounding boxes from model shape(model_height, model_width) to the shape of original imagex[..., :4] -= [pad_w, pad_h, pad_w, pad_h]x[..., :4] /= min(ratio)# Bounding boxes boundary clampx[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])  # clip避免边界框超出图像边界x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])# 关键点坐标映射到原图上,从[:, 5:]开始算num_kpts = x.shape[1] // 3  # 56 // 3 = 18for kid in range(2, num_kpts + 1):x[:, kid * 3 - 1] = (x[:, kid * 3 - 1] - pad_w) / min(ratio)x[:, kid * 3] = (x[:, kid * 3] - pad_h) / min(ratio)return xelse:return []# 绘框def draw_and_visualize(self, im, bboxes, keypoint_draw, vis=False, save=True):"""Draw and visualize results.Args:im (np.ndarray): original image, shape [h, w, c].bboxes (numpy.ndarray): [n, 56], n is number of bboxes.vis (bool): imshow using OpenCV.save (bool): save image annotated.Returns:None"""# Draw rectangles for bbox in bboxes:box, conf, kpts = bbox[:4], bbox[4], bbox[5:]# draw bbox rectanglecv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),self.color, 1, cv2.LINE_AA)cv2.putText(im, f'{self.classes[0]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),cv2.FONT_HERSHEY_SIMPLEX, 0.7, self.color, 2, cv2.LINE_AA)# 画关键点,连线keypoint_draw.plot_skeleton_kpts(im, kpts)# Show imageif vis:cv2.imshow('demo', im)cv2.waitKey(0)cv2.destroyAllWindows()# Save imageif save:cv2.imwrite('demo.jpg', im)if __name__ == '__main__':# Create an argument parser to handle command-line argumentsparser = argparse.ArgumentParser()parser.add_argument('--model', type=str, default='weights/yolov8s-pose.onnx', help='Path to ONNX model')parser.add_argument('--source', type=str, default=str('bus.jpg'), help='Path to input image')parser.add_argument('--imgsz', type=tuple, default=(640, 640), help='Image input size')parser.add_argument('--conf', type=float, default=0.25, help='Confidence threshold')parser.add_argument('--iou', type=float, default=0.45, help='NMS IoU threshold')parser.add_argument('--infer_tool', type=str, default='openvino', choices=("openvino", "onnxruntime"), help='选择推理引擎')args = parser.parse_args()# Build modelmodel = YOLOv8_pose(args.model, args.imgsz, args.infer_tool)keypoint_draw = KeyPoint_draw()  # 可视化关键点# Read image by OpenCVimg = cv2.imread(args.source)# Inferenceboxes = model(img, conf_threshold=args.conf, iou_threshold=args.iou)# Visualizeif len(boxes) > 0:model.draw_and_visualize(img, boxes, keypoint_draw, vis=False, save=True)

在这里插入图片描述

具体时间消耗:

预处理时间:0.005s(包含Pad)
推理时间:0.10s(Openvino)
推理时间:0.11s(ONNXRuntime)
后处理时间:0.001s
注:640×640下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/276547.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android 音频系统

导入 早期Linux版本采用的是OSS框架,它也是Unix及类Unix系统中广泛使用的一种音频体系。 ALSA是Linux社区为了取代OSS而提出的一种框架,是一个源代码完全开放的系统(遵循GNU GPL和GNU LGPL)。ALSA在Kernel 2.5版本中被正式引入后,OSS就逐步…

C语言:操作符详解(下)

目录 一、逗号表达式二、下标访问[ ]、函数调用()1. [ ]下标引用操作符2.函数调用操作符 三、结构成员访问操作符1.结构体(1) 结构的声明(2) 结构体变量的定义和初始化 2.结构成员访问操作符(1)结构体成员的直接访问(2)结构体成员的间接访问 四、操作符的属性:优先级…

Rudolf and the Ball Game

传送门 题意 思路 暴力枚举每一个妆台的转换条件 code #include<iostream> #include<cstdio> #include<stack> #include<vector> #include<algorithm> #include<cmath> #include<queue> #include<cstring> #include<ma…

【Docker】容器的生态系统

Docker提供了一整套技术支持&#xff0c;包括核心技术、平台技术、支持技术。 核心技术 容器核心技术是指能让Container&#xff08;容器&#xff09;在host&#xff08;集群、主机&#xff09;上运行起来的那些技术。 1&#xff09;容器规范&#xff1a;OCI&#xff08;runt…

搭建mysql主从复制(主主复制)

1&#xff1a;设主库允许远程连接(注意&#xff1a;设置账号密码必须使用的插件是mysql_native_password&#xff0c;其他的会连接失败) #切换到mysql这个数据库&#xff0c;修改user表中的host&#xff0c;使其可以实现远程连接 mysql>use mysql; mysql>update user se…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的零售柜商品检测软件(Python+PySide6界面+训练代码)

摘要&#xff1a;开发高效的零售柜商品识别系统对于智能零售领域的进步至关重要。本文深入介绍了如何运用深度学习技术开发此类系统&#xff0c;并分享了全套实现代码。系统采用了领先的YOLOv8算法&#xff0c;并与YOLOv7、YOLOv6、YOLOv5进行了性能比较&#xff0c;呈现了诸如…

蓝桥杯每日一题:血色先锋队

今天浅浅复习巩固一下bfs 答案&#xff1a; #include<iostream> #include<algorithm> #include<cstring>using namespace std; typedef pair<int,int> PII;const int N510; int n,m,a,b; int dist[N][N]; PII q[N*N]; int hh0,tt-1;int dx[]{1,0,-1,…

网络层:地址解析协议ARP、网际控制报文协议ICMP、虚拟专用网络VPN、网络地址转换NAT

文章目录 地址解析协议ARP解决的问题ARP解析流程ARP高速缓存 网际控制报文协议ICMPICMP报文的种类ICMP差错报告报文ICMP询问报文 ICMP应用举例分组网间探测PING(Packet InterNet Groper)traceroute(tracert)确定路径的MTU 虚拟专用网络专用地址虚拟专用网络远程接入VPN(remote …

某鱼弹幕逆向

声明: 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;不提供完整代码&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01;wx a15018…

mysql题库详解

1、如何创建和删除数据库&#xff1f; 创建数据库 CREATE DATABASE 数据库名; 删除数据库 drop database 数据库名; 2、MyISAM与InnoDB的区别&#xff1f; 1&#xff09;事务&#xff1a;MyISAM 不支持事务 InnoDB 支持 2&#xff09;行锁/表锁&#xff1a;MyISAM 支持表级锁…

Redis中AOF数据持久化

AOF介绍 AOF&#xff08;Append Only File&#xff09;持久化&#xff1a;以独立日志的方式存储了 Redis 服务器的顺序指令序列&#xff0c;并只记录对内存进行修改的指令。 当Redis服务发生雪崩等故障时&#xff0c;可以重启服务并重新执行AOF文件中的指令达到恢复数据的目的…

SpringMVC | SpringMVC中的 “数据绑定”

目录: “数据绑定” 介绍1.简单数据绑定 :绑定 “默认数据” 类型绑定 “简单数据类型” 类型 &#xff08;绑定Java“基本数据类型”&#xff09;绑定 “POJO类型”绑定 “包装 POJO”“自定义数据” 绑定 :Converter (自定义转换器) 2.复杂数据绑定 :绑定数组绑定集合 作者简…

ubuntu 18.04安装教程(详细有效)

文章目录 一、下载ubuntu 18.04镜像二、安装ubuntu1. 点击下载好的Vmware Workstation&#xff0c;点击新建虚拟机&#xff0c;选择 “自定义(高级)”&#xff0c;之后下一步。2. 默认配置&#xff0c;不需要更改&#xff0c;点击下一步。3. 选择 “安装程序光盘映像文件(iso)(…

Windows 11 DirectX 诊断工具获取电脑型号

Windows 11 DirectX 诊断工具获取电脑型号 1. dxdiag2. DirectX 诊断工具References 1. dxdiag Win R 打开运行窗口&#xff0c;输入 dxdiag&#xff0c;点击确定按钮。 2. DirectX 诊断工具 通过 DirectX 诊断工具&#xff0c;可以直接找到电脑型号&#xff0c;型号是硬件制…

RocketMQ学习笔记三(黑马)大神级

课程来源:6.RocketMQ安装_哔哩哔哩_bilibili (时长:19.5h) 讲解版本:4.5版本(我是以4.8版本实践的) 目录 第一部分 核心功能 第1章 RocketMQ的下载、安装、启动和测试(Linux环境) 启动: 测试: 第2章 RocketMQ集群搭建 2.1 集群特点 2.2 集群模式 2.3 双主…

程序员必备开发工具、程序员必备集成开发环境(IDE)

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

Java项目:52 springboot基于SpringBoot的旅游网站的设计与实现013

作者主页&#xff1a;源码空间codegym 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 旅游网站主要功能如下&#xff1a; 1.用户管理&#xff1a;注册、登录、退出、修改密码&#xff1b; 2.分类显示&#xff1a;显示旅游路线的…

【机器学习300问】30、准确率的局限性在哪里?

一、什么是准确率&#xff1f; 在解答这个问题之前&#xff0c;我们首先得先回顾一下准确率的定义&#xff0c;准确率是机器学习分类问题中一个很直观的指标&#xff0c;它告诉我们模型正确预测的比例&#xff0c;即 还是用我最喜欢的方式&#xff0c;举例子来解释一下&#xf…

ISIS多区域实验简述

为支持大型路由网络&#xff0c;IS-IS在路由域内采用两级分层结构。 IS-IS网络中三种级别的路由设备&#xff1a;将Level-1路由设备部署在区域内&#xff0c;Level-2路由设备部署在区域间&#xff0c;Level-1-2路由设备部署在Level-1和Level-2路由设备的中间。 实验拓扑图&…

107. 如何使用Docker以及Docker Compose部署Go Web应用

文章目录 一、为什么需要Docker&#xff1f;二、Docker部署示例1. 准备代码2. 创建Docker镜像3. 编写Dockerfile4. Dockerfile解析5. 构建镜像6. 通过镜像创建容器运行 三、分阶段构建示例四、附带其他文件的部署示例五、关联其他容器六、Docker Compose模式七、总结 本文将介绍…