pytorch升级打怪(三)

数据集合数据加载器

  • 简介
  • 加载数据集
  • 迭代和可视化数据集
  • 为您的文件创建自定义数据集
    • ```__init__```
    • ```__len__```
    • ```__getitem__```
  • 准备您的数据以使用DataLoaders进行训练
  • 通过DataLoader进行遍载

简介

处理数据样本的代码可能会变得混乱且难以维护;理想情况下,我们希望我们的数据集代码与模型训练代码解耦,以提高可读性和模块化。PyTorch提供了两个数据原语:torch.utils.data.DataLoader和torch.utils.data.Dataset,允许您使用预加载的数据集以及您自己的数据。Dataset存储样本及其相应的标签,DataLoader在Dataset周围包装一个可以可以方便地访问样本。

PyTorch域库提供一些预加载的数据集(如FashionMNIST),该子类为torch.utils.data.Dataset,并实现特定于特定数据的功能。它们可用于原型和基准测试您的模型。您可以在这里找到它们:图像数据集、文本数据集和音频数据集

加载数据集

以下是如何从TorchVision加载Fashion-MNIST数据集的示例。Fashion-MNIST是Zalando文章图像的数据集,包括60,000个训练示例和10,000个测试示例。每个示例都包括一个28×28的灰度图像和来自10个班级之一的相关标签。

我们用以下参数加载FashionMNIST数据集:

  • root是存储火车/测试数据的路径,
  • train指定训练或测试数据集,
  • download=True如果root上没有数据,则从互联网上下载数据。
  • transform和target_transform指定功能和标签转换

import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plttraining_data = datasets.FashionMNIST(root="data",train=True,download=True,transform=ToTensor()
)test_data = datasets.FashionMNIST(root="data",train=False,download=True,transform=ToTensor()
)

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to data/FashionMNIST/raw/train-images-idx3-ubyte.gz0%|          | 0/26421880 [00:00<?, ?it/s]0%|          | 65536/26421880 [00:00<01:12, 363720.69it/s]1%|          | 229376/26421880 [00:00<00:38, 682917.83it/s]3%|3         | 917504/26421880 [00:00<00:12, 2109774.93it/s]12%|#2        | 3211264/26421880 [00:00<00:03, 6286038.17it/s]28%|##8       | 7438336/26421880 [00:00<00:01, 14838321.45it/s]41%|####      | 10747904/26421880 [00:00<00:00, 16477772.21it/s]57%|#####7    | 15138816/26421880 [00:01<00:00, 22904288.96it/s]71%|#######   | 18644992/26421880 [00:01<00:00, 21979092.87it/s]92%|#########2| 24346624/26421880 [00:01<00:00, 30077676.52it/s]
100%|##########| 26421880/26421880 [00:01<00:00, 18141478.99it/s]
Extracting data/FashionMNIST/raw/train-images-idx3-ubyte.gz to data/FashionMNIST/rawDownloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw/train-labels-idx1-ubyte.gz0%|          | 0/29515 [00:00<?, ?it/s]
100%|##########| 29515/29515 [00:00<00:00, 327742.46it/s]
Extracting data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to data/FashionMNIST/rawDownloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz0%|          | 0/4422102 [00:00<?, ?it/s]1%|1         | 65536/4422102 [00:00<00:11, 363330.31it/s]5%|5         | 229376/4422102 [00:00<00:06, 684189.84it/s]21%|##1       | 950272/4422102 [00:00<00:01, 2195763.19it/s]87%|########6 | 3833856/4422102 [00:00<00:00, 7634326.84it/s]
100%|##########| 4422102/4422102 [00:00<00:00, 6105857.14it/s]
Extracting data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to data/FashionMNIST/rawDownloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz0%|          | 0/5148 [00:00<?, ?it/s]
100%|##########| 5148/5148 [00:00<00:00, 37228063.78it/s]
Extracting data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw

迭代和可视化数据集

我们可以像列表一样手动索引Datasets:training_data[index]。我们使用matplotlib在训练数据中可视化一些样本。


labels_map = {0: "T-Shirt",1: "Trouser",2: "Pullover",3: "Dress",4: "Coat",5: "Sandal",6: "Shirt",7: "Sneaker",8: "Bag",9: "Ankle Boot",
}
figure = plt.figure(figsize=(8, 8))
cols, rows = 3, 3
for i in range(1, cols * rows + 1):sample_idx = torch.randint(len(training_data), size=(1,)).item()img, label = training_data[sample_idx]figure.add_subplot(rows, cols, i)plt.title(labels_map[label])plt.axis("off")plt.imshow(img.squeeze(), cmap="gray")
plt.show()

在这里插入图片描述

为您的文件创建自定义数据集

自定义数据集类必须实现三个函数:

__init__、__len__和__getitem__

。看看这个实现;FashionMNIST图像存储在目录img_dir中,其标签单独存储在CSV文件annotations_file。

在接下来的章节中,我们将分解每个函数中发生的事情。


import os
import pandas as pd
from torchvision.io import read_imageclass CustomImageDataset(Dataset):def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):self.img_labels = pd.read_csv(annotations_file)self.img_dir = img_dirself.transform = transformself.target_transform = target_transformdef __len__(self):return len(self.img_labels)def __getitem__(self, idx):img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])image = read_image(img_path)label = self.img_labels.iloc[idx, 1]if self.transform:image = self.transform(image)if self.target_transform:label = self.target_transform(label)return image, label

__init__

实例化数据集对象时,__init__函数运行一次。我们初始化包含图像、注释文件和两个转换的目录(下一节将更详细地介绍)。


def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):self.img_labels = pd.read_csv(annotations_file)self.img_dir = img_dirself.transform = transformself.target_transform = target_transform

__len__

__len__函数返回我们数据集中的样本数。


def __len__(self):return len(self.img_labels)

__getitem__

__getitem__函数加载并返回给定索引idx的数据集的样本。基于索引,它识别图像在磁盘上的位置,使用read_image将其转换为张量,从self.img_labels中的csv数据中检索相应的标签,调用其上的转换函数(如果适用),并在元组中返回张量图像和相应标签。


def __getitem__(self, idx):img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])image = read_image(img_path)label = self.img_labels.iloc[idx, 1]if self.transform:image = self.transform(image)if self.target_transform:label = self.target_transform(label)return image, label

准备您的数据以使用DataLoaders进行训练

Dataset检索我们数据集的功能,并一次标记一个样本。在训练模型时,我们通常希望以“迷你批次”传递样本,在每个时代重新洗牌数据以减少模型过拟合,并使用Pythonmultiprocessing来加快数据检索速度。

DataLoader是一个可以在一个简单的API中为我们抽象这种复杂性的可以进行的。

from torch.utils.data import DataLoadertrain_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)

通过DataLoader进行遍载

我们已经将该数据集加载到DataLoader,可以根据需要迭代数据集。下面的每个迭代都会返回一批train_features和train_labels(分别包含batch_size=64特征和标签)。因为我们指定了shuffle=True,在我们遍复所有批次后,数据被洗牌(为了更精细地控制数据加载顺序,请查看采样器)。


# Display image and label.
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label: {label}")

在这里插入图片描述

Feature batch shape: torch.Size([64, 1, 28, 28])
Labels batch shape: torch.Size([64])
Label: 5

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/276950.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

三分钟快速理解Yarn的工作流程

知识讲解之前&#xff0c;我们先来听一段小故事(不要带入现实) 健鑫集团是一家公司&#xff0c;主要业务就是承接其他公司外包出去的项目&#xff0c;这地方是怎么运行的呢&#xff1f; 外部想和集团达成合作&#xff0c;草拟个合同直接和 Boss谈&#xff0c;Boss 来者不拒&am…

智慧城市:提升城市治理能力的关键

目录 一、智慧城市的概念及特点 二、智慧城市在提升城市治理能力中的应用实践 1、智慧交通&#xff1a;提高交通治理效率 2、智慧政务&#xff1a;提升政府服务水平 3、智慧环保&#xff1a;加强环境监测与治理 4、智慧安防&#xff1a;提高城市安全水平 三、智慧城市在…

css 各种方位计算 - client系列 offset系列 scroll系列 x/y 系列

offset系列 HTMLElement.offsetTop - Web API 接口参考 | MDN 一文读懂offsetHeight/offsetLeft/offsetTop/offsetWidth/offsetParent_heightoffset-CSDN博客 client系列 搞清clientHeight、offsetHeight、scrollHeight、offsetTop、scrollTop-CSDN博客 scroll系列 秒懂scr…

Python控制摄像头并获取数据文件

一、引言 摄像头作为计算机视觉领域的核心设备之一&#xff0c;广泛应用于视频监控、图像采集和数据处理等领域。通过Python编程语言&#xff0c;我们可以实现对摄像头的精确控制&#xff0c;包括摄像头的开启、关闭、参数设置以及数据获取等功能。 目录 一、引言 二、摄像头…

ElementUI Message 消息提示,多个显示被覆盖的问题

现象截图&#xff1a; 代码&#xff1a;主要是在this.$message 方法外层加上 setTimeout 方法 <script> export default {name: "HelloWorld",props: {msg: String,},methods: {showMessage() {for (let i 0; i < 10; i) {setTimeout(() > {this.$mess…

上海亚商投顾:沪指震荡调整 飞行汽车概念股持续爆发

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 沪指昨日震荡调整&#xff0c;深成指走势稍强&#xff0c;创业板指一度涨超1%&#xff0c;黄白二线走势分化&a…

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:ColumnSplit)

将子组件纵向布局&#xff0c;并在每个子组件之间插入一根横向的分割线。 说明&#xff1a; 该组件从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 可以包含子组件。 ColumnSplit通过分割线限制子组件的高度。初始…

微信小程序--开启下拉刷新页面

1、下拉刷新获取数据enablePullDownRefresh 开启下拉刷新&#xff1a; enablePullDownRefreshbooleanfalse是否开启当前页面下拉刷新 案例&#xff1a; 下拉刷新&#xff0c;获取新的列表数据,其实就是进行一次新的网络请求&#xff1a; 第一步&#xff1a;在.json文件中开…

【论文阅读】ACM MM 2023 PatchBackdoor:不修改模型的深度神经网络后门攻击

文章目录 一.论文信息二.论文内容1.摘要2.引言3.作者贡献4.主要图表5.结论 一.论文信息 论文题目&#xff1a; PatchBackdoor: Backdoor Attack against Deep Neural Networks without Model Modification&#xff08;PatchBackdoor:不修改模型的深度神经网络后门攻击&#xf…

DDR协议基础进阶(三)——(基本功能、初始化、MR寄存器)

DDR协议基础进阶&#xff08;三&#xff09;——&#xff08;基本功能、初始化、MR寄存器&#xff09; 一、DDR基本功能 DDR基本功能主要包括&#xff1a; 8-bit prefetch预取——8-bit&#xff0c;是指8位数据&#xff0c;即8倍芯片位宽的数据。由于DDR内部数据传输是32bit…

大型政企迈向数智化深水区,如何保障安全用云?

文&#xff5c;白 鸽 编&#xff5c;王一粟 在这个千行万业加速智能升级的时代&#xff0c;我们应该如何保证数字安全&#xff1f; 一方面&#xff0c;AI技术快速发展给当下带来一系列新型挑战&#xff1a;自动化攻击、深度伪造、隐私侵犯、数据安全等等。另一方面&#…

群晖NAS使用Docker安装WPS Office并结合内网穿透实现公网远程办公

文章目录 推荐1. 拉取WPS Office镜像2. 运行WPS Office镜像容器3. 本地访问WPS Office4. 群晖安装Cpolar5. 配置WPS Office远程地址6. 远程访问WPS Office小结 7. 固定公网地址 推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff…

【C++庖丁解牛】vector容器的简易模拟实现(C++实现)(最后附源码)

&#x1f341;你好&#xff0c;我是 RO-BERRY &#x1f4d7; 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f384;感谢你的陪伴与支持 &#xff0c;故事既有了开头&#xff0c;就要画上一个完美的句号&#xff0c;让我们一起加油 目录 前言vector容器代码实现内…

stm32-定时器输入捕获

目录 一、输入捕获简介 二、输入捕获框图 1.定时器总框图 2.输入捕获框图 3.主从触发模式 三、固件库实现 1.定时器测量PWM频率 2.PWMI模式 一、输入捕获简介 二、输入捕获框图 1.定时器总框图 上图可知&#xff0c;四个输入捕获和输出比较共用4个CCR寄存器&#x…

lftp服务与http服务(包含scp服务)详解

目录 前言: 1.lftp服务 1.1lftp服务的介绍以及应用场景 1.2安装lftp服务 1.2进行配置 1.3实际操作 2.http服务 2.1http服务介绍以及应用场景 2.1安装httpd服务 2.2进行配置 2.3实际操作 3.scp服务 3.1scp服务的介绍以及应用场景 致谢: 前言: 在当今互联网…

Seata 2.x 系列【12】高可用集群部署

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Seata 版本 2.0.0 本系列Spring Boot 版本 3.2.0 本系列Spring Cloud 版本 2023.0.0 源码地址&#xff1a;https://gitee.com/pearl-organization/study-seata-demo 文章目录 1. 概述2. 搭建演…

Unity AI Navigation插件快速使用方法

AI Navigation插件使您能够创建能够在游戏世界中智能移动的角色。这些角色利用的是根据场景几何结构自动生成的导航网格。障碍物可以让您在运行时改变角色的导航路径。 演示使用的Unity版本为Tuanjie 1.0.0,团结引擎是Unity中国的引擎研发团队基于Unity 2022 LTS版本为中国开发…

java学习之路-程序逻辑控制

目录 1.分支结构 1.1 if语句 栗子 判断奇数还是偶数 判断一个年份是否为闰年 1.2switch语句 栗子 2. 循环结构 2.1while 循环 栗子 2.2break和continue break continue 2.3for循环 基本语法 栗子 2.4 do while 循环 3.输入输出 3.1输出 3.2从键盘输入 栗子…

DayDreamInGIS 之 ArcGIS Pro二次开发 锐角检查

功能&#xff1a;检查图斑中所有的夹角&#xff0c;如果为锐角&#xff0c;在单独的标记图层中标记。生成的结果放在默认gdb中&#xff0c;以 图层名_锐角检查 的方式命名 大体实现方式&#xff1a;遍历图层中的所有要素&#xff08;多部件要素分别处理&#xff09;&#xff0…

【SQL Server】实验七 数据完整性

1 实验目的 掌握实体完整性、参照完整性和用户自定义完整性约束的创建方法。掌握完整性约束的运行检查机制。掌握参照完整性的级联删除和修改方法。掌握正确设计关系模式完整性约束的方法。 2 实验内容 2.1 掌握实体完整性约束的创建和使用方法 创建表时定义由一个属性组成…