【进阶五】Python实现SDVRP(需求拆分)常见求解算法——差分进化算法(DE)

基于python语言,采用经典差分进化算法(DE)对 需求拆分车辆路径规划问题(SDVRP) 进行求解。

目录

  • 往期优质资源
  • 1. 适用场景
  • 2. 代码调整
  • 3. 求解结果
  • 4. 代码片段
  • 参考

往期优质资源


经过一年多的创作,目前已经成熟的代码列举如下,如有需求可私信联系,表明需要的 问题与算法,原创不宜,有偿获取。
VRP问题GAACOALNSDEDPSOQDPSOTSSA
CVRP
VRPTW
MDVRP
MDHVRP
MDHVRPTW
SDVRP

1. 适用场景

  • 求解CVRP
  • 车辆类型单一
  • 车辆容量小于部分需求节点需求
  • 单一车辆基地

2. 代码调整


与CVRP问题相比,SDVRP问题允许客户需求大于车辆容量。为了使得每个客户的需求得到满足,必须派遣一辆或多辆车辆对客户进行服务,也就是需要对客户的需求进行拆分。关于如何进行拆分一般有两种方式:

  • 先验拆分策略:提前制定策略对客户的需求(尤其是大于车辆容量的客户需求)进行分解,将SDVRP问题转化为CVRP问题
  • 过程拆分策略:在车辆服务过程中对客户需求进行动态拆分

本文采用文献[1]提出的先验分割策略,表述如下:

(1)20/10/5/1拆分规则

  • m20 =max{ m ∈ Z + ∪ { 0 } ∣ 0.20 Q m < = D i m\in Z^+ \cup \{0\} | 0.20Qm <= D_i mZ+{0}∣0.20Qm<=Di }
  • m10 =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.20 Q m 20 m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.20Qm_{20}~ mZ+{0}∣0.10Qm<=Di0.20Qm20  }
  • m5 =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.20Qm_{20}-0.10Qm_{10} mZ+{0}∣0.05Qm<=Di0.20Qm200.10Qm10 }
  • m1 =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.20Qm_{20}-0.10Qm_{10}-0.05Qm_{5} mZ+{0}∣0.01Qm<=Di0.20Qm200.10Qm100.05Qm5 }

(2)25/10/5/1拆分规则

  • m25 =max{ m ∈ Z + ∪ { 0 } ∣ 0.25 Q m < = D i m\in Z^+ \cup \{0\} | 0.25Qm <= D_i mZ+{0}∣0.25Qm<=Di }
  • m10 =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.25 Q m 25 m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.25Qm_{25}~ mZ+{0}∣0.10Qm<=Di0.25Qm25  }
  • m5 =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.25Qm_{25}-0.10Qm_{10} mZ+{0}∣0.05Qm<=Di0.25Qm250.10Qm10 }
  • m1 =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.25Qm_{25}-0.10Qm_{10}-0.05Qm_{5} mZ+{0}∣0.01Qm<=Di0.25Qm250.10Qm100.05Qm5 }

在实现过程中,对于需求超过车辆容量的客户必须进行需求拆分,而对于未超过车辆容量的客户可以拆分也可以不拆分,这里设置了参数比例进行限制。

3. 求解结果


(1)收敛曲线
在这里插入图片描述

(2)车辆路径

在这里插入图片描述

4. 代码片段


(1)数据结构

# 数据结构:解
class Sol():def __init__(self):self.node_no_seq = None # 节点id有序排列self.obj = None # 目标函数self.fitness = None  # 适应度self.route_list = None # 车辆路径集合self.route_distance_list = None  # 车辆路径长度集合
# 数据结构:网络节点
class Node():def __init__(self):self.id = 0 # 节点idself.x_coord = 0 # 节点平面横坐标self.y_coord = 0 # 节点平面纵坐标self.demand = 0 # 节点需求
# 数据结构:全局参数
class Model():def __init__(self):self.best_sol = None # 全局最优解self.demand_id_list = [] # 需求节点集合self.demand_dict = {}self.sol_list = [] # 解的集合self.depot = None # 车场节点self.number_of_demands = 0 # 需求节点数量self.vehicle_cap = 0 # 车辆最大容量self.distance_matrix = {} # 节点距离矩阵self.demand_id_list_ = [] # 经先验需求分割后的节点集合self.demand_dict_ = {} # 需求分割后的节点需求集合self.distance_matrix_ = {}  # 原始节点id间的距离矩阵self.mapping = {}  # 需求分割前后的节点对应关系self.split_rate = 0.5 # 控制需求分割的比例(需求超出车辆容量的除外)self.popsize = 100 # 种群规模self.Cr=0.5 # 差分交叉概率self.F=0.5 # 差分变异概率

(2)距离矩阵

# 初始化参数
def cal_distance_matrix(model):for i in model.demand_id_list:for j in model.demand_id_list:d=math.sqrt((model.demand_dict[i].x_coord-model.demand_dict[j].x_coord)**2+(model.demand_dict[i].y_coord-model.demand_dict[j].y_coord)**2)model.distance_matrix[i,j]=max(d,0.0001) if i != j else ddist = math.sqrt((model.demand_dict[i].x_coord - model.depot.x_coord) ** 2 + (model.demand_dict[i].y_coord - model.depot.y_coord) ** 2)model.distance_matrix[i, model.depot.id] = distmodel.distance_matrix[model.depot.id, i] = dist

(3)邻域

#差分变异;变异策略:DE/rand/1/bin
def muSol(model,v1):x1=model.sol_list[v1].node_no_seqwhile True:v2=random.randint(0,model.popsize-1)if v2!=v1:breakwhile True:v3=random.randint(0,model.popsize-1)if v3!=v2 and v3!=v1:breakx2=model.sol_list[v2].node_no_seqx3=model.sol_list[v3].node_no_seqmu_x=[min(int(x1[i]+model.F*(x2[i]-x3[i])),model.number_of_demands-1) for i in range(model.number_of_demands) ]return mu_x
#差分交叉
def crossSol(model,vx,vy):cro_x=[]for i in range(model.number_of_demands):if random.random()<model.Cr:cro_x.append(vy[i])else:cro_x.append(vx[i])cro_x=adjustRoutes(cro_x,model)return cro_x

参考

【1】 A novel approach to solve the split delivery vehicle routing problem

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/279824.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker简介与安装

简介 用来快速构建、运行、管理应用的工具简单说&#xff0c;帮助我们部署项目以及项目所依赖的各种组件典型的运维工具 安装 1.卸载旧版 首先如果系统中已经存在旧的Docker&#xff0c;则先卸载&#xff1a; yum remove docker \docker-client \docker-client-latest \dock…

解决虚拟机Linux ens33 没有 IP 地址

解决方法&#xff1a; 先进入 root 模式 sudo su 查看目录 ls /etc/sysconfig 找到上述文件夹 ls /etc/sysconfig/network-scripts/ 用 vim 打开 ifcfg-ens33 这个文件&#xff08;不都是这个名字&#xff0c;按这个方法找到这个文件就行&#xff09; vim /etc/sysconfig/netw…

农业四情监测设备—全面、准确地收集农田环境数据

型号推荐&#xff1a;云境天合TH-Q3】农业四情监测设备是一种高科技的农田监测工具&#xff0c;旨在实时监测和管理农田中的土壤墒情、作物生长、病虫害以及气象条件。这些设备综合运用了传感器、摄像头、气象站等技术手段&#xff0c;能够全面、准确地收集农田环境数据&#x…

H264字节流编码格式

1.H264码流格式——字节流格式 字节流格式是大多数编码器&#xff0c;默认的输出格式。它的基本数据单位为NAL单元&#xff0c;也即NALU。为了从字节流中提取出NALU&#xff0c;协议规定&#xff0c;在每个NALU的前面加上起始码&#xff1a;0x000001或0x00000001&#xff08;0…

Nodejs 第五十八章(大文件上传)

在现代网站中&#xff0c;越来越多的个性化图片&#xff0c;视频&#xff0c;去展示&#xff0c;因此我们的网站一般都会支持文件上传。 文件上传的方案 大文件上传&#xff1a;将大文件切分成较小的片段&#xff08;通常称为分片或块&#xff09;&#xff0c;然后逐个上传这…

【3DsMax】UVW展开——以制作牙膏盒为例

效果 步骤 1. 从网上下载牙膏盒贴图&#xff0c;我下载的贴图地址为&#xff08;牙膏盒贴图链接&#xff09; 2. 打开3DsMax&#xff0c;创建一个长方体&#xff0c;设置长宽高分别为180、45、40毫米 打开材质编辑器&#xff0c;点击漫反射后的按钮 双击“位图” 将材质赋予长…

113 链接集10--ctrl+左键单击多选

1.ctrl+左键单击多选,单击单选 精简代码 <div class="model-list"><div@mousedown.prevent="handleClick(item, $event)"class="model-list-item"v-for="item in modelList":key="item.id":class="{ model-a…

QT6实现创建与操作sqlite数据库及读取实例(一)

一.Qt为SQL数据库提供支持的基本模块&#xff08;Qt SQL&#xff09; Qt SQL的API分为不同层&#xff1a; 驱动层 SQL API层 用户接口层 1.驱动层 对于Qt 是基于C来实现的框架&#xff0c;该层主要包括QSqlDriver&#xff0c;QSqlDriverCreator,QSqlDriverCreatorBase,QSqlPlug…

C++初阶 | [九] list 及 其模拟实现

摘要&#xff1a;介绍 list 容器&#xff0c;list 模拟实现&#xff0c;list与vector的对比 list&#xff08;带头双向循环列表&#xff09; 导入&#xff1a;list 的成员函数基本上与 vector 类似&#xff0c;具体内容可以查看相关文档(cplusplus.com/reference/list/list/)&…

UE4_官方动画内容示例1.1_使用动画资产

对一个SkeletalMeshActor进行设置&#xff0c;设置好之后&#xff0c;可以通过该Actor的细节&#xff08;Details&#xff09;面板播放指定的动画序列&#xff08;AnimationSequence&#xff09;资产&#xff08;例如让Actor翻跟斗并做开合跳&#xff09;。 骨架网格体定义&am…

后端系统开发之——接口参数校验

今天难得双更&#xff0c;大家点个关注捧个场 原文地址&#xff1a;后端系统开发之——接口参数校验 - Pleasure的博客 下面是正文内容&#xff1a; 前言 在上一篇文章中提到了接口的开发&#xff0c;虽然是完成了&#xff0c;但还是缺少一些细节——传入参数的校验。 即用户…

2024计算机二级Python6

在Python语言中局部变量可以是任意标识符&#xff0c;因为局部变量在函数结束时相当于被销毁&#xff0c;即使与全局变量同名也可以正常运行 在函数内部引用数字类型全局变量时&#xff0c;必须使用global保留字声明 函数内部引用组合类型全局变量时&#xff0c;可以不通过gl…

HTML实现卷轴动画完整源码附注释

动画效果截图 页面的html结构代码 <!DOCTYPE html> <html> <head lang=

Python之Web开发中级教程----ubuntu中下载安装Postman

Python之Web开发中级教程----ubuntu中下载安装Postman PostMan 是一款功能强大的网页调试与发送网页 HTTP 请求的 Chrome 插件&#xff0c;可以直接去对我们写出来的路由和视图函数进行调试&#xff0c;作为后端程序员是必须要知道的一个工具。 查看ubuntu系统中是否已经安装了…

微信小程序订阅消息(一次性订阅消息)

1、准备工作 登录微信公众平台–>订阅消息–>在公共模板库中选中一个模版–>将模版id复制&#xff0c;前后端都需要。 点击详情–>查看详细内容模版 复制给后端 2、相关api的使用 前端使用&#xff1a;wx.requestSubscribeMessage wx.openSetting wx.getSetti…

51单片机-蜂鸣器

1.蜂鸣器的介绍 无源蜂鸣器不能一直通电&#xff0c;无源蜂鸣器内部的线圈较小&#xff0c;易烧坏 蜂鸣器的驱动 达林顿晶体管&#xff08;npn型&#xff09; 应用&#xff1a; 按下独立按键同时蜂鸣器响起提示音&#xff0c;数码管显示对应的独立按键键码 #include <REG…

微信小程序 ---- 慕尚花坊 结算支付

结算支付 01. 配置分包并跳转到结算页面 思路分析&#xff1a; 随着项目功能的增加&#xff0c;项目体积也随着增大&#xff0c;从而影响小程序的加载速度&#xff0c;影响用户的体验。 因此我们需要将 结算支付 功能配置成一个分包&#xff0c; 当用户在访问设置页面时&a…

交叉注意力融合时域、频域特征的FFT + CNN -BiLSTM-CrossAttention电能质量扰动识别模型

往期精彩内容&#xff1a; 电能质量扰动信号数据介绍与分类-Python实现-CSDN博客 Python电能质量扰动信号分类(一)基于LSTM模型的一维信号分类-CSDN博客 Python电能质量扰动信号分类(二)基于CNN模型的一维信号分类-CSDN博客 Python电能质量扰动信号分类(三)基于Transformer…

消息队列面试题

目录 1. 为什么使用消息队列 2. 消息队列的缺点 3. 消息队列如何选型&#xff1f; 4. 如何保证消息队列是高可用的 5. 如何保证消息不被重复消费&#xff08;见第二条&#xff09; 6. 如何保证消息的可靠性传输&#xff1f; 7. 如何保证消息的顺序性&#xff08;即消息幂…

【RabbitMQ | 第六篇】消息重复消费问题及解决方案

文章目录 6.消息重复消费问题6.1问题介绍6.2解决思路6.3将该消息存储到Redis6.3.1将id存入string&#xff08;单消费者场景&#xff09;&#xff08;1&#xff09;实现思路&#xff08;2&#xff09;问题 6.3.2将id存入list中&#xff08;多消费场景&#xff09;&#xff08;1&…