Graph RAG 迎来记忆革命:“海马体”机制让问答更精准!

随着生成式 AI 技术的快速发展,RAG(Retrieval-Augmented Generation)和 Agent 成为企业应用大模型的最直接途径。然而,传统的 RAG 系统在准确性和动态学习能力上存在明显不足,尤其是在处理复杂上下文和关联性任务时表现不佳。近期,一篇论文提出了 HippoRAG 2,这一新型 RAG 框架在多个方面取得了显著进步,为企业级 AI 应用提供了更强大的解决方案。


1. HippoRAG 2 简介:模仿人类记忆的 RAG 框架

HippoRAG 2 是一种创新的检索增强生成框架,旨在提升大语言模型(LLMs)的持续学习能力。它通过模仿人类长期记忆的动态性和互联性,解决了现有 RAG 系统在 意义理解(sense-making)关联性(associativity) 任务上的局限性。HippoRAG 2 在原始 HippoRAG 的基础上进行了多项改进,包括增强段落整合、上下文感知和在线 LLM 使用,从而在事实记忆、意义理解和关联性任务上表现出色。
在这里插入图片描述


2. 为什么长期记忆对提升 RAG 的准确率有显著影响?

长期记忆机制是 HippoRAG 2 的核心创新之一,它通过模仿人类大脑的记忆方式,显著提升了 RAG 系统回答问题的准确率。以下是长期记忆机制对 RAG 准确率提升的具体影响,并结合实际示例说明:

2.1 增强上下文理解能力

传统 RAG 系统通常依赖向量检索,难以捕捉复杂上下文中的隐含信息,导致回答问题时缺乏深度理解。长期记忆机制通过动态整合上下文信息,能够更好地理解查询的意图和背景,从而生成更准确的回答。

示例

  • 查询:“为什么特斯拉的股价在 2023 年大幅波动?”
  • 传统 RAG:可能只检索到与“特斯拉股价”相关的孤立信息,忽略宏观经济、行业趋势等关联因素。
  • HippoRAG 2:通过长期记忆机制,能够整合特斯拉财报、电动汽车行业动态、全球经济环境等多维度信息&#x

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/28012.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

现在创业的风口有哪些?

1. 人工智能与机器学习 生成式AI:如ChatGPT等工具,广泛应用于内容创作、客服等领域。 AI辅助工具:涵盖医疗、金融、法律等行业,提升效率。 自动化:企业通过AI优化流程,减少人力成本。 2. 绿色科技与可持…

任务9:交换机基础及配置

CSDN 原创主页:不羁https://blog.csdn.net/2303_76492156?typeblog 一、交换机基础 交换机的概念:交换机是一种网络设备,用于连接多台计算机或网络设备,实现数据包在局域网内的快速交换。交换机基于MAC地址来转发数据包&#x…

阿里万相,正式开源

大家好,我是小悟。 阿里万相正式开源啦。这就像是AI界突然开启了一扇通往宝藏的大门,而且还是免费向所有人敞开的那种。 你想想看,在这个科技飞速发展的时代,AI就像是拥有神奇魔法的魔法师,不断地给我们带来各种意想…

计算机毕业设计SpringBoot+Vue.js相亲网站(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

15-YOLOV8OBB损失函数详解

一、YOLO OBB支持的OBB 在Ultralytics YOLO 模型中,OBB 由YOLO OBB 格式中的四个角点表示。这样可以更准确地检测到物体,因为边界框可以旋转以更好地适应物体。其坐标在 0 和 1 之间归一化: class_index x1 y1 x2 y2 x3 y3 x4 y4 YOLO 在内部处理损失和输出是xywhr 格式,x…

硬件学习笔记--47 LDO相关基础知识介绍

目录 1.LDO主要功能介绍 2.LDO相关参数介绍 3.使用方法 4.优、缺点 1.LDO主要功能介绍 LDO(Low Dropout Regulator)是一种线性稳压器,用于将输入电压转换为稳定的输出电压。其主要功能包括: 1)稳压功能&#xff1…

10分钟从零开始搭建机器人管理系统(飞算AI)

1. 安装插件 https://www.feisuanyz.com/ 2. Intellij IDEA中运行 创建一个BS架构的机器人远程操控系统,具备机器人状态及位置实时更新,可以实现机器人远程遥控,可以对机器人工作日志进行统计分析,以及其它管理系统的常用功能3…

基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 EM算法 E步:期望步 M步:最大化步 4.2 GMM模型 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 2.算法运行软件版本 程序运行配置环境: 人工智能算法…

DeepSeek DeepEP学习(一)low latency dispatch

背景 为了优化延迟,low lantency使用卡间直接收发cast成fp8的数据的方式,而不是使用normal算子的第一步执行机间同号卡网络发送,再通过nvlink进行转发的两阶段方式。进一步地,normal算子的dispatch包含了notify_dispatch传输meta…

SparkStreaming之04:调优

SparkStreaming调优 一 、要点 4.1 SparkStreaming运行原理 深入理解 4.2 调优策略 4.2.1 调整BlockReceiver的数量 案例演示: object MultiReceiverNetworkWordCount {def main(args: Array[String]) {val sparkConf new SparkConf().setAppName("Networ…

性能测试监控工具jmeter+grafana

1、什么是性能测试监控体系? 为什么要有监控体系? 原因: 1、项目-日益复杂(内部除了代码外,还有中间件,数据库) 2、一个系统,背后可能有多个软/硬件组合支撑,影响性能的因…

【机器学习】Logistic回归#1基于Scikit-Learn的简单Logistic回归

主要参考学习资料: 《机器学习算法的数学解析与Python实现》莫凡 著 前置知识:线性代数-Python 目录 问题背景数学模型类别表示Logistic函数假设函数损失函数训练步骤 代码实现特点 问题背景 分类问题是一类预测非连续(离散)值的…

频域分析:利用傅里叶变换(Fourier Transform)对图像进行深度解析

在图像处理和计算机视觉领域,傅里叶变换(Fourier Transform)是一项基础而强大的工具。它将时域信号(如图像)转化为频域信号,为我们提供了图像的频率特性,这对于图像的分析、压缩、去噪和特征提取…

WPF+WebView 基础

1、基于.NET8&#xff0c;通过NuGet添加Microsoft.Web.WebView2。 2、MainWindow.xaml代码如下。 <Window x:Class"Demo.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/win…

Python----数据分析(Matplotlib二:绘图一:折线图,条形图,直方图)

一、折线图 折线图是一种常用的数据可视化工具&#xff0c;它主要用于展示随时间或有序类别变化的数据趋势。 plt.plot(x, y, fmt, **kwargs) 名称描述x这个参数是数据点的 x 轴坐标&#xff0c;可以是一个列表或者数组。如果 x 没有被指 定&#xff0c;那么它默认为 range(l…

利用Adobe Acrobat 实现PPT中图片分辨率的提升

1. 下载适用于 Windows 的 64 位 Acrobat 注册方式参考&#xff1a;https://ca.whu.edu.cn/knowledge.html?type1 2. 将ppt中需要提高分辨率的图片复制粘贴到新建的pptx问价中&#xff0c;然后执行“文件—>导出---->创建PDF、XPS文档” 3. 我们会发现保存下来的distrib…

从零开始实现机器臂仿真(UR5)

1. UR5软件配置 # 安装 MoveIt! 依赖 sudo apt install ros-humble-moveit ros-humble-tf2-ros ros-humble-moveit-setup-assistant ros-humble-gazebo-ros-pkgs # 安装 UR 官方 ROS2 驱动 sudo apt update sudo apt install ros-humble-ur-robot-driver ros-humble-ur-descri…

Jupyter Notebook 入门教程

Jupyter Notebook 是一个功能强大的交互式计算环境&#xff0c;广泛应用于数据科学、机器学习和数据分析领域。它允许用户在浏览器中创建和共享包含代码、文本、数学公式、图表等的文档。本文将为您提供一份简明的 Jupyter Notebook 入门教程&#xff0c;帮助您快速上手。 1. 什…

【大模型原理与技术】1.2基于学习的语言模型

机器学习的要素&#xff1a; 训练数据 假设类 归纳偏置 学习算法 学习范式 机器学习的过程&#xff1a; 在某种学习范式下&#xff0c;基于训练数据&#xff0c;利用学习算法&#xff0c;从受归纳偏置限制的假设类中选取出可以达到学习目标的假设&#xff0c;该假设可以泛化到…

抽奖系统(从0-1)(上)

hu项目的开发流程介绍 1. 项目启动阶段 • 项⽬概述&#xff1a;介绍项⽬的背景、⽬标和预期成果。 • 团队组建&#xff1a;建跨职能团队&#xff0c;包括产品经理、UI/UX 设计师、开发⼈员、测试⼈员等。 • ⻆⾊定义&#xff1a;明确团队中各个⻆⾊的职责和⼯作内容。 2. 需…