基于cnn深度学习的yolov5+pyqt+分类+resnet+骨龄检测系统

在这里插入图片描述

往期热门博客项目回顾:

计算机视觉项目大集合

改进的yolo目标检测-测距测速

路径规划算法

图像去雨去雾+目标检测+测距项目

交通标志识别项目

yolo系列-重磅yolov9界面-最新的yolo

姿态识别-3d姿态识别

深度学习小白学习路线

YOLOv5与骨龄识别 YOLOv5(You Only Look Once version 5)是一种基于深度学习的实时目标检测模型,以其高效性和准确性著称。在骨龄识别场景下,YOLOv5可以被训练用来自动定位X光片中的手部或手腕骨骼结构,作为预处理步骤,以便后续进行骨龄分析。。

  • YOLOv5训练阶段基于yolov5 release 7.0版本,Python 3.11.0和PyTorch
    2.1.0.dev20230703,
  • 由于训练过程中需要float64,但Metal不支持float64,所以采用了CPU训练。我们使用了yolov5s的官方预训练权重。
    骨龄识别 骨龄识别是一种利用医学影像评估个体生长发育阶段的技术,它通过对儿童或青少年的手腕或膝关节等部位的X射线图像进行分析,对比标准骨龄图谱来预测个体生理年龄。结合YOLOv5,首先对X光图像进行目标检测,准确标出手部关键骨骼结构,随后这部分区域会被送入专门设计的骨龄分类模型进行详细的骨龄分期判断。

在这里插入图片描述

yolov5阶段项目结构:

  • 图像数据:handbone/data/orignal_data/Image

  • 数据标签:handbone/data/orignal_data/Annotations

  • 标签类别:handbone/data/ImageSets/label_list.txt

  • 代码文件:

    handbone/data/orignal_data/ImageSets/get_list.py:

  • 将数据集分为train、trainval以及val,并将对应文件名字存储于handbone/data/orignal_data/ImageSets中:train.txt,trainval.txt,val.txt

  • handbone/data/create_label.py:将handbone/data/original_data中的数据集转换为适用于目标检测模型训练的标签文件和图像文件,并将文件保存在handbone/data/images和handbone/data/labels,

  • 并将三组数据集对应的文件路径保存在handbone/data/train.txt handbone/data/trainval.txt
    handbone/data/val.txt

  • 使用yolo官方训练脚本进行模型的训练,训练好的权重保存在runs/train/exp/weights/best.pt。

使用resnet18进行骨龄预测: (handbone/data/arthrosis中有关于骨龄计算相关内容)
PyQt框架 PyQt是一个Python绑定的图形用户界面应用程序开发框架,基于Qt库构建。在骨龄识别系统中,PyQt可用于构建直观易用的桌面应用程序界面,实现如图像上传、显示、预处理、结果展示等功能。开发者可以通过PyQt编写前后端交互逻辑,使得医生或者其他用户能够方便地导入X光片,运行YOLOv5进行骨龄相关部位的检测,并在界面上实时显示检测结果和最终的骨龄分析报告。

数据集

  • 中有九种关节类别分别为「DIP, DIPFirst, MCP, MCPFirst, MIP, PIP, PIPFirst, Radius,
    Ulna」,每种类别有11个等级,根据性别来打分,根据分数推断骨龄

  • handbone/arthrosis_data_util.py:使用自适应直方图均衡化(CLAHE)与随机旋转对图像进行增强处理。
    handbone/arthrosis_datalist.py:将图像进行数据划分(9:1),同时将对应文件路径保存在每种类别的文件夹中

  • handbone/arthrosis_dataset.py:主要训练过程的dataloader,其中统一的输入数据的格式,并进行一定的数据增强

  • handbone/arthrosis_trainer.py:模型训练的主程序,主要框架网络是resnet18,但将第一层的输入改为(1,244,244),输出改为对应类别数,并将每类最优模型保存在./params中

  • handbone/common.py:提供了一些计算和处理手骨骨龄相关的功能,包括筛选手骨骨节、计算骨龄、生成报告等功能

  • 由于pytorch在训练过程中的loss函数出现了总线错误,我们将部分代码重新基于keras编写:keras_datasets.py,
    keras_trainer.py, keras_common.py

  • 其他部分也是基于keras实现:

    handbone/hand_bone_detect.py handbone/hand_view.py handbone/main.py

分类算法

骨龄分类算法是整个流程的关键部分,它用于对手部骨骼特征进行量化并映射到相应的骨龄阶段。在YOLOv5完成骨骼定位后,提取出的骨骼特征将输入至分类模型,可能是传统的统计学方法或者是深度学习模型,如卷积神经网络(CNN),来进行精细化的骨龄分期预测。

代码

#全部代码----》: qq1309399183
class MainWindow(QMainWindow, Ui_MainWindow):def __init__(self):super().__init__()self.setupUi(self)self.bind_slots()# 加载yolov5模型(本地训练好的)self.mode = torch.hub.load('./','custom',path='./runs/train/exp/weights/best.pt',source='local')self.mode.eval()self.mode.conf = 0.5  # 置信度print("yolov5模型加载完成")# Load other keras modelsself.parm = {}for key, value in keras_common.arthrosis.items():if value[0] in self.parm:continueResNet18, preprocess_input = Classifiers.get('resnet18')base_model = ResNet18((224, 224, 1), weights=None, include_top=False)model = Sequential()model.add(base_model)model.add(Flatten())model.add(Dense(value[1]))# Load weightsmodel.load_weights(f"params/{value[0]}")self.parm[value[0]] = modelprint("九个模型加载完成")# 信号   槽(函数)def btn_open_img(self):print("点击按钮")file_path = QFileDialog.getOpenFileNames(self, dir="handbone/data/images", filter="*.png;*.jpeg;*.jpg")if file_path[0]:# 选择图片print(file_path[0][0])# 回显手骨x光片self.label_2.setPixmap(QPixmap(file_path[0][0]))# 获取性别sex = 'boy' if self.radioButton.isChecked() else 'girl'print(sex)# 侦测result = hand_bone_detect.detect(self.mode, sex , file_path[0][0], self.parm)# 显示检测结果self.label_3.setText(result)# 绑定槽def bind_slots(self):self.pushButton.clicked.connect(self.btn_open_img)if __name__ == '__main__':app = QApplication(sys.argv)window = MainWindow()window.show()app.exec()

最后:计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!

##全部代码code--》:qq1309339183

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/280499.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

容器中的大模型(三)| 利用大语言模型:容器化高效地部署 PDF 解析器实践...

作者:宋文欣,智领云科技联合创始人兼CTO 01 简介 大语言模型(LLMs)正逐渐成为人工智能领域的一颗璀璨明星,它们的强大之处在于能够理解和生成自然语言,为各种应用提供了无限可能。为了让这些模型更好地服务…

网络编程:数据库

一、作业 1> 创建一个工人信息库,包含工号(主键)、姓名、年龄、薪资。 2> 添加三条工人信息(可以完整信息,也可以非完整信息) 3> 修改某一个工人的薪资(确定的一个) 4> …

[C++]20:unorderedset和unorderedmap结构和封装。

unorderedset和unorderedmap结构和封装 一.哈希表&#xff1a;1.直接定址法&#xff1a;2.闭散列的开放定址法&#xff1a;1.基本结构&#xff1a;2.insert3.find4.erase5.补充&#xff1a;6.pair<k,v> k的数据类型&#xff1a; 3.开散列的拉链法/哈希桶&#xff1a;1.基…

【计算机网络】计算机网络概述

文章目录 一、计算机网络的概念二、 计算机网络的功能1. 数据通信2. 资源共享3. 分布式处理4. 提高可靠性5. 负载均衡 补充&#xff1a; 计算机的发展阶段小结三、计算机网络的组成1. 组成部分2. 工作方式3. 功能组成 四、 计算机网络的分类1. 按分布范围2. 按使用者3. 按交换技…

零拷贝原理+kafka中的零拷贝

零拷贝原理kafka中的零拷贝 kafka性能之零拷贝传统IO零拷贝mmp优化sendfile优化sendfile DMA scatter/gather优化Kafka是怎么使用零拷贝的 kafka性能之零拷贝 kafka中的零拷贝并不是说完全避免了上下文切换与cpu拷贝的次数, 而是减少这种拷贝次数 传统IO 传统的一次IO流程 rea…

学习开发小程序的起航日记

2024年3月16日 不知不觉中三月份还只剩了一半的光景&#xff0c;我想写的内容还很多没有写&#xff0c;或者更应该说&#xff0c;是想积累的还有很多。现在最应该去完善Java的内容&#xff0c;可还是想先等等。想等搞清楚小程序部分&#xff0c;想等积累完小程序的内容。 这几…

华为综合案例-普通WLAN全覆盖配置(2)

组网图 结果验证 在AC_1和AC_2上执行display ap all命令&#xff0c;检查当前AP的状态&#xff0c;显示以下信息表示AP上线成功。[AC_1] display ap all Total AP information: nor : normal [1] ExtraInfo : Extra information P : insufficient power supply ---…

冒泡排序的原理及其实现

✨✨✨学习的道路很枯燥&#xff0c;希望我们能并肩走下来! 目录 前言 一、冒泡排序的原理 二、代码实现 总结 前言 本篇详细介绍了冒泡排序的原理及其实现&#xff0c;让使用者对冒泡排序的原理及其实现有进一步认识&#xff0c;而不是仅仅停留在表面&#xff0c;更好的模…

xercesc库保存XML功能实现

目录 一 参考链接 二 运行结果 三 代码 一 参考链接 DOM Programming Guide (apache.org) Xerces-c DOM XML文件的构造_xerces-c domimplementation-CSDN博客 Xerces-c库的使用-CSDN博客 二 运行结果 三 代码 #if 1//参考链接&#xff1a; https://blog.csdn.net/RGBMa…

流畅的 Python 第二版(GPT 重译)(九)

第四部分&#xff1a;控制流 第十七章&#xff1a;迭代器、生成器和经典协程 当我在我的程序中看到模式时&#xff0c;我认为这是一个麻烦的迹象。程序的形状应该只反映它需要解决的问题。代码中的任何其他规律性对我来说都是一个迹象&#xff0c;至少对我来说&#xff0c;这表…

【数据可视化】Echarts中的其它图表

个人主页 &#xff1a; zxctscl 如有转载请先通知 文章目录 1. 前言2. 绘制散点图2.1 绘制基本散点图2.2 绘制两个序列的散点图2.3 绘制带涟漪特效的散点图 3. 绘制气泡图3.1 绘制标准气泡图3.2 绘制各国人均寿命与GDP气泡图3.3 绘制城市A、城市B、城市C三个城市空气污染指数气…

Tech Talks技术讲座中文培训-报名学习LPWAN、Matter、蓝牙和Wi-Fi最新开发技能!

Silicon Labs&#xff08;亦称“芯科科技”&#xff09;主办新一轮2024年“亚太区Tech Talks在线技术讲座”即将在5月9日至8月8日&#xff08;中文系列场次&#xff09;&#xff0c;以及4月24日至8月7日&#xff08;英文系列场次&#xff09;正式展开&#xff0c;现正热烈报名中…

uniapp使用Canvas给图片加水印把临时文件上传到服务器

生成的临时路径是没有完整的路径没办法上传到服务器 16:37:40.993 添加水印后的路径, _doc/uniapp_temp_1710923708347/canvas/17109238597881.png 16:37:41.041 添加水印后的完整路径, file://storage/emulated/0/Android/data/com.jingruan.zjd/apps/__UNI__BE4B000/doc/…

ES 常见面试题及答案

目录 es 写入数据流程 es 删除数据流程 es 读数据流程 es 部署的服务有哪些角色 es 的实现原理 es 和lucence 关系 如何提高写入效率 提高搜索效率 es doc value指的啥 分片指的啥&#xff0c;定义后可不可义再修改 深分页如何优化 对于聚合操作是如何优化的 元数据…

adobe animate 时间轴找不到编辑多个帧按钮

如题&#xff0c;找了半天&#xff0c;在时间轴上找不到编辑多个帧按钮,导致无法批量处理帧 然后搜索发现原来是有些版本被隐藏了&#xff0c;需要再设置一下 勾选上就好了

POI和EasyExcel区别和操作Excel

POI和EasyExcel操作Excel 常用场景 1、将用户信息导出为excel表格&#xff08;导出数据… &#xff09; 2、将Excel表中的信息录入到网站数据库&#xff08;文件数据上传… &#xff09; 开发中经常会设计到excel的处理&#xff0c;如导出Excel&#xff0c;导入Excel到数据库…

鸿蒙Harmony应用开发—ArkTS-转场动画(组件内隐式共享元素转场)

geometryTransition用于组件内隐式共享元素转场&#xff0c;在组件显示切换过程中提供平滑过渡效果。通用transition机制提供了opacity、scale等转场动效&#xff0c;geometryTransition通过id绑定in/out组件(in指入场组件、out指出场组件)&#xff0c;使得组件原本独立的trans…

Gateway新一代网关

Gateway新一代网关 1、概述 ​ Cloud全家桶中有个很重要的组件就是网关&#xff0c;在1.x版本中都是采用的Zuul网关&#xff1b; ​ 但在2.x版本中&#xff0c;zuul的升级一直跳票&#xff0c;SpringCloud最后自己研发了一个网关SpringCloud Gateway替代Zuul。 ​ 官网&…

手机运营商二要素检测:重塑信任基石,筑牢信息安全屏障

随着移动互联网的普及和数字经济的快速发展&#xff0c;用户信息安全的重要性日益凸显。运营商二要素检测作为一种强大的安全验证机制&#xff0c;以其精准匹配与实时验证的特性&#xff0c;为各类应用场景提供了一种可靠的身份识别解决方案&#xff0c;正在成为众多企业和服务…

C++:继承:面向对象编程的重要特性

(❁◡❁)(●◡●)╰(*▽*)╯(*/ω&#xff3c;*)(^///^)(❁◡❁)(❁◡❁)(●◡●)╰(*▽*)╯(*/ω&#xff3c;*)(❁◡❁)(●’◡’●)╰(▽)╯(/ω&#xff3c;)(///) C&#xff1a;继承&#xff1a;面向对象编程的重要特性 前言**继承**1.继承的概念及定义1.1继承的概念1.2继…