【数据结构】——线性表(顺序表加链表),万字解读(加链表oj详解)

前言

由于之前存在过对两者的区别考虑,所以把他们放在一起来说,更加容易区别和理解

对于有关线性表的概念这里就不展示了,这里主要是介绍线性表里面的这两个结构的知识点

一.顺序表
1.顺序表介绍

顺序表的存储结构和逻辑结构都是相邻的, 这里如果我们把a1的地址设置成100,假设每个元素占4个存储空间,那么a2就是104,a3就是108,依次往下 ,所以只要确定起始位置,后面的位置都能找到,这也就代表了可以随机存取,这句话请记住,和后面链表的区别有关。

顺序表的底层结构就是数组,其实你把它当作数组来看也不是不行,同时顺序表采用的是顺序存储结构,对与数组的操作一般有增删查改,和之前的通讯录差不多,大家可以参考一下之前的通讯录 动态顺序表的实现,其实也有静态版本,但是静态版本有缺陷

typedef int SLDataType;
#define N 7
typedef struct SeqList
{SLDataType a[N];//数组长度int size;//当前有效数据个数
}SL;

可以很明显的看出,N是固定的,所以大小不能随便改变,但是如果用动态的方法去用malloc开辟一片空间,那么这个空间用realloc去增容,那这块空间就是可以随时变化的 

typedef int SLDataType;
typedef struct SeqList
{SLDataType *a;int size;//有效数据int capacity;//容量,如果不够,就用realloc去增容
}SL;

动态分配的空间是在堆上开辟的,静态分配是在栈上开辟的,两者的开辟空间不一样,所以动态开辟需要自己主动去释放空间,而且需要一个指针去指向这个空间,因为你需要知道它的地址才能对它进行一个操作,而静态的因为是数组,数组名就代表了它的地址

2. 顺序表的实现

1.初始化表

2.插入元素

3.删除元素

4.查找元素

5.修改元素

初始化 

void SLInit(SL *psl) {psl->a = (SLDatatype*)malloc(sizeof(SLDatatype) * 4);//先开辟这么多大小if (psl == NULL) {perror("malloc fail");return;}psl->sz = 0;psl->capacity =4;//分别把结构体里的元素初始化
}

静态版本的初始化就是遍历整个顺序表的元数,把他们全设置为0。 

这里的空间要记得用free释放,不然会有内存泄露

 容量不够的时候,就增容,这个函数一般反正插入数据的函数里面

void SLCheckBack(SL* psl) {if (psl->sz == psl->capacity) {SLDatatype *tmp = (SLDatatype*)realloc(psl->a, sizeof(SLDatatype) * psl->capacity*2);//如果容量不够了,那么就增容if (tmp == NULL) {perror("realloc fail");//扩容失败,把错误信息打印出来return;}psl->a = tmp;psl->capacity *= 2;}
}

 插入元素

 插入元素有头插和尾插,还有中间插入,其实很简单,就把它当作数组来做就行了,因为用malloc开辟的空间是连续的,那么放进去的元素也是连续的,还有一点就是这里要判断是否要扩容。还有就是头插和中间插入的时候要移动数据

时间复杂度O(N)


void SLPushBack(SL* psl, SLDatatype x) {SLCheckBack(psl);//判断psl->a[psl->sz++] = x;
}  //尾插
void SLPushFron(SL* psl, SLDatatype x) {SLCheckBack(psl);for (int i = psl->sz - 1; i >= 0; i--) {//这里需要移动数据,把他们都往后移一位psl->a[i+1]=psl->a[i];}psl->a[0] = x;psl->sz++;}//头插void SLInsert(SL* psl, int pos, SLDatatype x){//中间插入assert(pos >= 0 && pos <= psl->sz);这里插入的位置不能出错,不然会越界,所以用assert断言SLCheckBack(psl);for (int i = psl->sz - 1; i >= psl->sz - pos; i--) {psl->a[i + 1] = psl->a[i];}psl ->a[pos-1] = x;psl->sz++;
}

删除元素 

删除元素和插入有些类似,删除头和中间的需要把数据往前面移动,删除最后的则不需要

时间复杂度位 O(N)

void SLPopBack(SL* psl) {assert(psl->sz >= 0);psl->sz--;
}//尾删
void SLPopFron(SL* psl) {assert(psl->sz >= 0);for (int i = 1; i <= psl->sz - 1; i++) {psl->a[i - 1] = psl->a[i];}psl->sz--;
}//头删void SLErase(SL* psl, int pos) {//中间删除assert(pos >= 0 && pos < psl->sz);for (int i = pos + 1; i <= psl->sz - 1; i++) {psl->a[i - 1] = psl->a[i];}psl->sz--;
}

查找元素 

遍历整个表中的元素,直到找到要找的元素为止,找到返回坐标,没有找到返回-1;除了实现方法查找也分为按位查找和按值查找,按位查找就是已经知道了数组下表去寻找,按值查找就是看是否有这个值,然后返回这个下标

按位查找的时间复杂度是 O(1), 按值查找的时间复杂度是 O(N) ;这两者还是要区分开的

int SLFind(SL* psl, SLDatatype pos)
{for (int i = 0; i < psl->sz; i++){if (psl->data == pos)return i;}return -1;
}

 修改元素

这里的修改很简单,因为前面已经有了查找元素的函数,这里直接套过来就行了


void SLModify(SL* psl, int pos, SLDatatype x)
{int k=SLFind(psl, pos);psl->data[k] = x;//直接修改就行
}
二.链表
1.链表介绍

链表的存储结构不要求连续,所以不具备顺序表的一些缺陷,但是链表也有自己的缺陷,就是不能随机存取,它是一种链式存储结构,之所以这样说,是因为它如果要存取一个元素,需要进行遍历到需要的位置,再进行操作。

链表分为,单链表,双链表,循环链表,循环双链表,其中由有带头和不带头的这样看起来链表其实有点复杂,其实链表咱们再偷点懒,把它们分为单链表和循环双链表,这样就简单很多了,因为循环双链表已经包括了前面两个。链表是由很多个结点组成,具体多少看你需求,每个结点都由一个数据域和指针组成,指针的作用就是把每个结点连起来

很多人会这么理解,就是不用指针,这里就会有一个结构体嵌套的问题,如果嵌套了,那么这个结构体的大小就无法计算, 所以这里要用指针去链接,假设每个结点的大小是一个字节,如图所示

这就是基本的单链表结构,这里是不带头的,从图中可以看出,其实链表其实并没有箭头,只不过是为了更好的显示,他们的next指针保存了下一个结点的地址,所以可以通过指针去寻找他们,记住指针是用来存放地址的变量,把这里理解了就不会有什么问题。

如果是带头的,也称之为哨兵位,也就是没有前面的头指针,有一个不存放数据的头结点

 有了哨兵位可以减少在链表头插的时候判断是不是空的情况,这样使头插,尾删的操作变简单了

下面我们进行单链表的实现,让你去体会这句话

2.单链表的实现

1.单链表的创建与销毁

2.单链表的增加元素

3.单链表的删除元素

4.单链表的修改元素

5.单链表的查找元素

 下面给出单链表所以实现函数,以便有一个清晰的认识,这里说明一下为什么要双指针,因为我们在头插和头删的时候我们需要去改变头指针的指向,改变指针的指向我们需要指针的指针,细品

#pragma once
#include<iostream>
#include<cstdlib>
#include<assert.h>
using namespace std;
typedef int SLTDataType;
typedef struct SListNode {SLTDataType data;struct SListNode* next;
}SLTNode;
//创建一个结点
SLTNode* BuyLTNode(SLTDataType* x);
//打印
void SLTPrint(SLTNode* phead);
//尾插
void SLTPushBack(SLTNode** pphead, SLTDataType x);
//头插
void SLTPushFront(SLTNode** pphead, SLTDataType x);
//尾删
void SLTPopBack(SLTNode* phead);
//头删
void SLTPopFront(SLTNode** pphed);
//查找
SLTNode* SLTFind(SListNode* phead, SLTDataType x);
//在pos之前插入
void SLInsert(SLTNode** pphead, SLTDataType x);
//在pos之后插入
void SLInsetAfter(SLTNode** pphead, SLTNode* pos, SLTDataType x);
//在pos之前删除
void SLErase(SLTNode* phead);
1.单链表的创建销毁

创建就是创建一个结点,销毁是把创建的所有结点都销毁

SLTNode* BuyLTNode(SLTDataType  x) {//创建一个结点SLTNode* newnode =(SLTNode*) malloc(sizeof(SLTNode));if (newnode == NULL) {perror("malloc");return NULL;}newnode->data = x;//创建出来初始化newnode->next = NULL;//如果不初始化,会导致野指针的问题出现return newnode;
}//销毁
void SLDesTory(SLTNode** pphead)
{SLTNode* next = *pphead;while (next){SLTNode* tail = next->next;free(next);next = tail;}*pphead = NULL;}
 2.单链表的插入元素,头插,指定位置插

 

 

 

 

但是这里的如果有两个指针 ,一个指向当前位置,一个指向下一个位置,那么就可以不管顺序,因为你都可以找得到

void SLTPushFornt(SLTNode** pphead, SListDatatype x) {assert(pphead);SLTNode*newnode= BuyNode(x);//创建一个结点newnode->next = *pphead;*pphead = newnode;
}//头插SLTNode* SLTFind(SListNode* phead,SLTDataType x) {SLTNode* tail = phead;while (tail) {if (tail->data == x) {return tail;}tail = tail->next;}return NULL;
}//查找函数,与下面的插入联系起来void SLTInset(SLTNode** pphead,SListDatatype m,SListDatatype x) {assert(pphead);SLTNode*pos=SLTFind(*pphead, m);//需要寻找你要插入的位置,所以有一个Find函数assert(pos);if (*pphead==pos) {SLTPushFornt(pphead, x);}//这里分清没有结点的情况和有结点的情况,如果不判断那么会导致有野指针情况else {SLTNode* tail = *pphead;while (tail->next != pos) {tail = tail->next;}SLTNode* newnode = BuyNode(x);tail->next = newnode;newnode->next = pos;}
}指定位置插
3.单链表删除元素,头删,尾删

 和插入元素有点像,这里删除就是如果链表为空那么就不能再删了,所以我们用assert断言去操作,插入是如果链表为空要特殊判断一下,细品,这里的尾删也有不同

void SLTPopFornt(SLTNode** pphead) {assert(pphead);assert(*pphead);//为空不能删SLTNode* tail = *pphead;*pphead = tail->next;//指向下一个,可以自己画图理解free(tail);
}//头删void SLTPopBack(SLTNode** pphead) {assert(pphead);assert(*pphead);if ((*pphead)->next == NULL) {free(*pphead);*pphead = NULL;}else {SLTNode* tail = *pphead;while (tail->next->next) {//这里就是那个特殊的地方,你需要找到删除位置的前一个位置,然后对要删除的位置进行操作,如果不这样,直接删除的话,会导致前一个指针为野指针,因为你找不到前一个,也就不能把它的next设置为空tail = tail->next;}free(tail->next);tail->next = NULL;}
}//尾删

        查找和修改比较容易都是一起的,这里就不介绍了,下面介绍一下双向循环链表

循环双向链表的优势比单链表的优势大很多,但是我们一般做题都用单链表,所以两者都要掌握

这里就不给双向链表的实现了,因为比较简单,唯一要注意的就是删除那里,可以自己去尝试操作一下

三.总结

顺序表

优点:

对于访问数据很方便,还有尾删,尾插很方便

缺点:

但是对于删除数据和增加数据(不包括尾插,尾删)所用的消耗比较大

单链表

优点:

插入和删除数据都比较快,不需要挪动数据

缺点:随机访问需要遍历时间复杂度为O(N),顺序表有一个二分查找时间复杂度为O(logN)

还有就是我们内存在读取数据的时候是读取cpu规定的字节大小的,比如一次读32字节,那么由于单链表的空间不连续,所以会读到很多垃圾信息,所以这里花的时间也有损耗

四.oj题

1.移除链表元素

这里的话我们的思路就是链表里面的删除操作,可以用尾删的方法,也可以逆向思维,把他们头插到新的链表里面,这里我们使用尾删的方法 ,也就是遍历遇到就删除

struct ListNode* removeElements(struct ListNode* head, int val) {struct ListNode*prev=NULL,*tail=head;//这里使用tail去遍历,反正找不到头指针。这里的prev是找到删除的前面一个结点,防止出现野指针的情况,具体的在上面有探讨过while(tail){if(tail->val==val)//如果等于那么我们直接删除{if(prev){//这里还需要主要的就是如果第一个就是要删除的值,那么这里prev就是空,
//如果不判断直接进行,那么prev->next就会变成野指针prev->next=tail->next;free(tail);tail=prev->next;}else{//如果是空,那么直接删head=head->next;free(tail);tail=head;}}else//不是目标值,进行迭代{prev=tail;tail=tail->next;}}return head;
}

 有了上一个题目,感觉题目都是单链表的操作,其实不难,难的在于细节,这就需要边画图边操作 

 趁热打铁再来一个

2.反转链表

其实思路差不多,也可以采用头插的方法,也就是把最后一个元素依次头插,那么这样就复杂了,而且时间上开销也大,所以我们这里的思路是将指针全部逆置就行了 

struct ListNode* reverseList(struct ListNode* head) {if(head==NULL)//如果为空直接返回return NULL;struct ListNode*n1=NULL;//这里需要三个指针去指向不同的位置struct ListNode*n2=head;struct ListNode*n3=n2->next;//可以画图表示while(n2)//当n2为空的时候就结束循环了,这里一直迭代,然后改变n2结点处的指针指向{n2->next=n1;n1=n2;n2=n3;if(n3)n3=n3->next;}return n1;
}

 如果第一题是我们的链表基础题,那么第二题有点偏理解和思维了,那我们继续

3. 返回倒数第 k 个节点

乍一看好像没什么思路,这里其实用一个快慢指针,快指针先走k步,然后再一起走,最后当快指针等于空的时候结束,这时候慢指针就指向了倒数第k个结点的位置,不理解的可以画图
 

int kthToLast(struct ListNode* head, int k){struct ListNode*fast,*slow;fast=slow=head;while(k--){if(fast==NULL)这里需要注意,如果k比原链表长度还大,那么就不存在倒数第几个,直接返回就行了return NULL;fast=fast->next;}while(fast){//快指针为空的时候退出循环slow=slow->next;fast=fast->next;}return slow->val;//返回慢指针指向的位置即可
}

 做完以后你对于链表的认识就有了比较好的理解了,但是还不够,下面给出几个题目练习

合并两个有序链表

链表分割

相交链表

 以上就是顺序表和单链表的相关知识整理,可能单链表不是很全,但是把单链表理解,后面的链表也不在话下,如果认真看完,你会对链表有一个好的理解和认识,希望本篇文章可以给你们带来帮助

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/280591.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

爬虫入门系列-HTML基础语法

&#x1f308;个人主页&#xff1a;会编辑的果子君 &#x1f4ab;个人格言:“成为自己未来的主人~” HTML基础语法 bs4解析比较简单&#xff0c;但是呢&#xff0c;首先你需要了解一丢丢的html知识&#xff0c;然后再去使用bs4去提取&#xff0c;逻辑和编写难度就会非常简…

常用负载均衡详解

一、介绍 在互联网场景下&#xff0c;负载均衡&#xff08;Load Balance&#xff09;是分布式系统架构设计中必须考虑的一个环节&#xff0c;它通常是指将负载流量&#xff08;工作任务、访问请求&#xff09;平衡、分摊到多个操作单元&#xff08;服务器、组件&#xff09;上去…

小程序绕过 sign 签名

之前看到了一篇文章【小程序绕过sign签名思路】之前在做小程序渗透时也遇到了这种情况&#xff0c;但是直接放弃测试了&#xff0c;发现这种思路后&#xff0c;又遇到了这种情况&#xff0c;记录下过程。 并没有漏洞分享&#xff0c;仅仅是把小程序也分享出来&#xff0c;方便…

Redis如何设置键的生存时间或过期时间

键的生存时间或过期时间 概述。 通过EXPIRE命令或者PEXIPIRE命令&#xff0c;客户端可以以秒或者毫秒精度为数据库中的某个键设置生存时间(Time To Live,TTL)&#xff0c;在经过指定的秒数或者毫秒数之后&#xff0c;服务器就会自动删除生存时间为0的键: 127.0.0.1:6379>…

酷开系统用电视为居家生活打开精彩窗口|酷开科技|酷开会员|

随着互联网的发展&#xff0c;电视也承载了更多的功能。相比于传统的电视&#xff0c;如今的智能电视屏幕更大、分辨率更高、色彩更加鲜艳&#xff0c;能够呈现出更加逼真的画面效果。当观众观看大屏电视时&#xff0c;仿佛置身于电影大幕的场景之中&#xff0c;感受到更为震撼…

神经网络(深度学习,计算机视觉,得分函数,损失函数,前向传播,反向传播,激活函数)

目录 一、神经网络简介 二、深度学习要解决的问题 三、深度学习的应用 四、计算机视觉 五、计算机视觉面临的挑战 六、得分函数 七、损失函数 八、前向传播 九、反向传播 十、神经元的个数对结果的影响 十一、正则化与激活函数 一、神经网络简介 神经网络是一种有监督…

EasyExcel模板填充list时按第一行格式合并单元格(含分页线设置)

前言&#xff1a; 在使用easyExcel填充list时&#xff0c;第一行存在合并单元格的情况下&#xff0c;后面使用forceNewRow()填充的行却没有合并样式。 模板&#xff1a; 填充后&#xff1a; 自定义拦截器&#xff1a; 根据官方文档的提示&#xff0c;我们需要自定义拦截器来…

【Redis】Redis常见原理和数据结构

Redis 什么是redis redis是一款基于内存的k-v数据结构的非关系型数据库&#xff0c;读写速度非常快&#xff0c;常用于缓存&#xff0c;消息队列、分布式锁等场景。 redis的数据类型 string&#xff1a;字符串 缓存对象&#xff0c;分布式ID&#xff0c;token&#xff0c;se…

MySQL分组查询与子查询 + MySQL表的联结操作

目录 1 MySQL分组查询与子查询 1.1 数据分组查询 1.2 过滤分组 1.3 分组结果排序 1.4 select语句中子句的执行顺序 1.5 子查询 2 MySQL表的联结操作 2.1 关系表 2.2 表联结 2.3 笛卡尔积 2.4 内部联结 2.5 外联结 2.6 自联结 2.7 组合查询 1 MySQL分组查询与子查询…

树莓派夜视摄像头拍摄红外LED灯

NoIR相机是一种特殊类型的红外摄像头&#xff0c;其名称来源于"No Infrared"的缩写。与普通的彩色摄像头不同&#xff0c;NoIR相机具备红外摄影和低光条件下摄影的能力。 一般摄像头能够感知可见光&#xff0c;并用于普通摄影和视频拍摄。而NoIR相机则在设计上去除了…

基于BusyBox的imx6ull移植sqlite3到ARM板子上

1.官网下载源码 https://www.sqlite.org/download.html 下载源码解压到本地的linux环境下 2.解压并创建install文件夹 3.使用命令行配置 在解压的文件夹下打开终端&#xff0c;然后输入以下内容&#xff0c;其中arm-linux-gnueabihf是自己的交叉编译器【自己替换】 ./config…

【云原生 • Kubernetes】认识 k8s、k8s 架构、核心实战

文章目录 Kubernetes基础概念1. 是什么2. 架构2.1 工作方式2.2 组件架构 3. k8s组件创建集群步骤一 基础环境步骤二 安装kubelet、kubeadm、kubectl步骤三 主节点使用kubeadm引导集群步骤四 副节点加入主节点步骤五 部署dashboard Kubernetes核心实战1. 资源创建方式2. Namespa…

Elasticsearch - Docker安装Elasticsearch8.12.2

前言 最近在学习 ES&#xff0c;所以需要在服务器上装一个单节点的 ES 服务器环境&#xff1a;centos 7.9 安装 下载镜像 目前最新版本是 8.12.2 docker pull docker.elastic.co/elasticsearch/elasticsearch:8.12.2创建配置 新增配置文件 elasticsearch.yml http.host…

EFcore的实体类配置

1 约定配置 约定大于配置&#xff0c;框架默认了许多实体类配置的规则&#xff0c;在约定规则不满足要求时&#xff0c;可以显示地定义规则 1 数据库表明在不指定的情况下&#xff0c;默认使用的是数据库上下文类【DBContext】中DbSet 的属性名&#xff1b; 2 数据库表列的名字…

笔记本8代i5和台式机12代i5的性能比较

一、 台式机12代i5 二、笔记本8代i5 在多核性能上差不多是2.4倍&#xff0c;所以跑大一点的Matlab或者别的程序&#xff0c;用台式机&#xff0c;后边实验室能用上超多核服务器另说。

SpringBoot(整合MyBatis + MyBatis-Plus + MyBatisX插件使用)

文章目录 1.整合MyBatis1.需求分析2.数据库表设计3.数据库环境配置1.新建maven项目2.pom.xml 引入依赖3.application.yml 配置数据源4.Application.java 编写启动类5.测试6.配置类切换druid数据源7.测试数据源是否成功切换 4.Mybatis基础配置1.编写映射表的bean2.MonsterMapper…

JavaScript进阶:js的一些学习笔记-this指向,call,apply,bind,防抖,节流

文章目录 1. this指向1. 箭头函数 this的指向 2. 改变this的指向1. call()2. apply()3. bind() 3. 防抖和节流1. 防抖2. 节流 1. this指向 1. 箭头函数 this的指向 箭头函数默认帮我们绑定外层this的值&#xff0c;所以在箭头函数中this的值和外层的this是一样的箭头函数中的…

springcloud-Eureka注册中心

如果你要理解这个技术博客博客专栏 请先学习以下基本的知识&#xff1a; 什么是微服务什么是服务拆分什么是springcloud Springcloud为微服务开发提供了一个比较泛用和全面的解决框架&#xff0c;springcloud继承了spring一直以来的风格——不重复造轮子&#xff0c;里面很多的…

PyTorch 深度学习(GPT 重译)(六)

十四、端到端结节分析&#xff0c;以及接下来的步骤 本章内容包括 连接分割和分类模型 为新任务微调网络 将直方图和其他指标类型添加到 TensorBoard 从过拟合到泛化 在过去的几章中&#xff0c;我们已经构建了许多对我们的项目至关重要的系统。我们开始加载数据&#xf…

用css滤镜做颜色不同的数据卡片(背景图对于css滤镜的使用)

<template> <div class"xx_modal_maincon"><div class"xx_model_bt">履约起始日至计算日配额及履约情况</div><el-row><el-col :span"6"><div class"xx_modal_mod"><div class"mod…