银行量子金融系统应用架构设计

量子金融(即Financial-Quantum,简称Fin-Q),特指量子科技在金融行业中的应用。

目前,量子科技中以量子保密通信、量子随机数和量子计算发展进度较快,取得了诸多阶段性重大技术突破和商用成果,这里仅以量子保密通信、量子随机数和量子计算为代表,简述国内外发展现状,以及在银行的应用前景。

  • 量子保密通信

从1984年BB84协议提出至今,量子保密通信的发展大致经历了理论奠基、理论与实验独立发展、理论与实验融合、网络化应用推广等四个阶段。从国内外实用化进展来看,我国与美国、欧盟、日本等主要发达国家和经济体并驾齐驱,处于该项技术的第一阵营。2005年,美国政府机构与高校和企业联合建成了全球首个密钥分发网络。2008年,欧盟组建第一个搭载信任中继的量子密钥分发试验网络。2009年,日本国家情报通信研究机构联合国内和欧洲多家企业,在东京建成全球领先的城域量子通信网络。我国2013年立项建设量子保密通信京沪干线,并于2017年正式开通,2016年又发射量子卫星墨子号,并于2018年初实现洲际量子密钥分发,奠定了我国在量子通信领域的国际领先地位。

近年来,国内外众多企业和金融机构频繁遭遇网络攻击和网络窃听,由此引发的经济损失更是难以估量,网络信息安全日趋受到国际国内的关注。银行作为一国经济和金融的动脉,其信息安全甚至牵动着整个国家经济稳健运营,保障银行信息传输安全具有重要现实意义。量子保密通信技术从物理层面保障信息传输绝对安全,在银行的异地互联通信、跨行业通信、跨境数据传输等众多场景中均具有重要实用价值。

依托量子保密通信干线和城域网,量子金融网络加密机能够在金融机构与监管机构间,金融机构与清算机构间,金融机构与分支机构间建立安全的数据传输通道。保障监管数据安全,清算数据安全,交易数据安全,达到降低信息安全风险的目的,而且量子金融网络加密设备的部署不改变原有的网络结构,能够与现有网络无缝连接。

金融数字认证体系是保障金融交易重要基础支撑设施。将基于数学算法的密钥体系替换为基于量子技术的密钥体系,能够提供无条件安全的密钥支撑服务,建立量子金融数字认证系统能够切实保障交易的完整性和不可抵赖性。同样量子金融数字认证系统不需要对现有金融业务系统进行改造,可以实现业务无缝切换。如图17-23所示。

图17-23 量子数字认证体系

在移动交易领域,量子通信技术也能发挥很好的作用,量子金融安全移动应用解决了金融机构与客户间的安全问题。将量子密钥下载到客户的手机,平板电脑,能够在客户移动终端与金融机构之间建立起量子安全会话,有效保护客户信息和交易安全。而量子通信移动应用解决方案,也使普通公众能够使用量子技术带来的安全和便利成为可能。图17-24、17-25、17-26展示了量子保密通信的三种通信模式。

图17-24 量子保密通信方案1

图17-25 量子保密通信方案2

量子随机数

一、基于量子加密的网银密码键盘

1、需求分析

系统默认输入法与系统和银行客户端没有直接联系,因此,对于使用系统默认输入法的银行客户端软件来说,当用户在银行客户端中输入账户和密码时,输入的内容将直接传给银行客户端,而一旦默认输入法感染恶意代码或被能记录键盘数据的恶意程序监控,用户输入的账号密码信息将轻易被黑客掌控。为了提高银行客户端信息输入的安全性,目前一些银行采用自绘虚拟键盘用于用户输入重要信息,但多为固定键位的键盘,但对键盘输入位置记录的防御能力依然有限。另外还有极少数银行系统采用自绘随机键盘,即通过后端系统下发随机数至用户端,手机端根据下发的随机数决定输入密码时虚拟键盘各键分布,防止客户密码被恶意软件盗取,但所采取的随机数源的随机性质量、密钥生成速率等直接影响了安全等级,因此高质量的真随机数成为为系统安全的关键所在。

2、优化方案

随机数发生器生成的密钥分为伪随机数和真随机数。伪随机数是通过计算机把真随机数做种子,通过用确定性的算法计算出均匀分布的随机数序列,若使用的初值(种子)不变,那么伪随机数的数序也不变,在样本数量足够或已知初值的情况下伪随机数可以被计算出来。真随机数是通过离子辐射脉冲检测器、气体放电管、漏电容等物理现象产生,其随机性可得到保证,但同时不同的制备方法产生的随机数效率、精度存在较大差异的情况。

量子随机数发生器采用基于激光自发辐射相位噪声的量子熵源,具有工作机理清晰、量子特征明显、随机数产生速率高、随机性质量好等特点,随机数产生速率可达Gbps量级,因此使用量子随机数源替换现有随机数发生装置,可有效提高系统的效率和安全性。

3、系统拓扑

基于量子加密的银行网银软盾

1、需求分析

目前银行软盾是将软件以SDK方式集成到应用中,再结合手机TEE通过非对称加密方式来实现金融业务的签名认证及数据加密。其非对称加密方式依托于素数的大数分解数学原理,在计算能力足够的情况下(如量子计算机的出现)存在被破解的风险。

2、优化方案

使用对称加密方式,在银行APP软件基础上融合量子密钥并结合TEE软件环境实现量子软盾开发。软盾初始密钥可通过离线方式在营业厅进行预置或在注册时通过在线方式进行下发,通过初始密钥对软盾与银行服务器间初次通信进行加密传输。在每次登录成功后或通信结束之前,由校验服务器生成新会话密钥,并用原会话密钥加密下发,用于会话密钥更新,银行APP获得新的会话密钥密文可在TEE安全环境中进行解密,最终得到的新会话密钥明文不得读出,会话密钥更新后需销毁原会话密钥。

3、系统拓扑

基于量子加密的银行U盾

1、需求分析

目前银行U盾采主要用于网上银行电子签名和数字认证,采用非对称密钥算法对网上数据进行加密、解密和数字签名,确保网上交易的保密性、真实性、完整性和不可否认性。其加密方式比较单一,且非对称方式的安全性基于数学原理,存被在破译的风险。

2、优化方案

在银行U盾现有的证书体系非对称加密方式上新增量子密钥对称加密的方式。基于量子安全服务平台,给银行U盾中的智能卡预充注量子密钥,结合量子随机数密钥源,实现高安全的加密通信。银行U盾一卡多证,在拓展U盾功能的同时提升其安全性,为银行用户数据安全保驾护航。

3、系统拓扑

​​​​​​​基于量子加密的银行身份验证

1、需求分析

目前银行系统的身份验证业务如登录认证场景、SM2签名验签、防重放场景等,在认证过程中都会涉及到随机数的使用,因此随机数源的随机性质量、密钥生成速率等为系统安全的关键指标。

2、优化方案

量子随机数发生器采用基于激光自发辐射相位噪声的量子熵源,具有工作机理清晰、量子特征明显、随机数产生速率高、随机性质量好等特点,随机数产生速率可达Gbps量级,因此使用量子随机数源替换现有随机数发生装置,可有效提高系统的效率和安全性。

3、系统拓扑

量子计算

量子计算金融应用领域

(一)量子组合优化

1.量子组合优化算法

量子优化是量子计算领域颇受关注的一个研究分支,主要研究如 何利用量子计算加速优化问题的求解。很多优化问题都可以被转化为 二次无约束二值优化(QuadraticUnconstrained Binary Optimization  QUBO)问题, 虽然该问题采用经典算法解决比较困难, 但是可以利 用量子算法进行有效解决,例如量子退火算法、量子近似优化算法、 变分量子虚时间演化算法、变分量子本征求解器、Grover 自适应性搜索算法等等。

1)量子退火算法

量子退火(QA)算法是在 1989 年由 Apolloni 等三位学者提出, 也称量子随机优化。量子退火算法通过使用量子涨落过程在给定的 一组候选解中找到给定目标函数的全局最小值,主要用于离散搜索空 间以及有许多局部最小值的组合优化问题。量子退火算法中使用隧道 场强度作为经典模拟退火法的温度参数,由于量子隧穿效应的存在, 使得量子退火算法更容易跳出局部最优解, 从而体现出超越经典模拟退火的优势

D-Wave 公司生产的专用量子计算机就是运行量子退火算法。例 如, D-Wave 2000Q 用来解决金融投资组合管理中的资产相关性识别 问题, 实现图形算法来聚类资产相关性,以识别各种金融投资组合,为未来的研究指明了高潜力方向

2)量子近似优化算法

量子近似优化算法(QAOA)是一种经典计算与量子计算的混合 算法, 可用于解决组合优化问题、最大分割问题等难题。该算法在解 决某些 NP-Hard  问题时有明显的加速效果。量子近似优化算法(QAOA)的核心原理在于利用量子叠加性来并行计算解空间内所有解的值,并将其编码至量子态的相位上。通过量子干涉,QAOA 能够 将更优的解所对应的概率变得更高。从底层来看,QAOA 以被视为 量子绝热退火算法路径的一种离散化表达, 但其参数选取比量子绝热退火算法具有更高的自由度。

3)变分量子虚时演化算法

变分量子虚时演化(VarQITE)算法作为一种量子-经典混合算法, 可以近似求解任意一个给定哈密顿量的系统, 得到其基态向量, 即哈 密顿量的最小特征值所对应的特征向量。在国内, 北京大学等在 2019  年完成了一般实虚时间演化的变分量子模拟理论,且使之能够适用于 近期量子设备,同时进一步详细阐述了如何选择测量兼容的 Ansatz 设计以及具有量子电路的广义变分算法实现

4)变分量子本征求解器

变分量子本征求解器(VQE)指利用经典优化器训练一个含参量 子线路, 用于求解矩阵本征值和本征矢。变分量子本征求解器作为一 种变分量子算法,多用于求解量子体系的基态和低激发态, 它通过一 系列参数化量子电路的变分优化过程迭代地逼近目标哈密顿量的最 低能量本征值。在其他变分算法中,这已成为使用近期量子设备实现量子优势并加速多个科学和技术领域进展的领先策略。

5Grover 自适应性搜索

Grover 算法是在 1996 年被 LK Grover 提出的用于搜索无序数据 库的量子算法11 ,其方法是通过迭代使用一个可识别搜索目标的黑盒 来提高搜索目标在量子叠加态中的振幅,从而提高测量获得搜索目标 的概率。经过对算法的进一步发展延伸,Grover  自适应性搜索算法 GAS)被提出并用于解决二次无约束二元优化 QUBO 问题12。相比 单纯的 Grover 搜索算法, GAS 算法是通过迭代搜索解决优化问题。与蛮力搜索相比,GAS 算法可以为组合优化问题提供二次加速。

2.量子组合优化应用场景

量子组合优化方法可以应用于投资组合优化、掉期清算、最优套利、信誉识别、金融危机预测等金融业务场景。

1)投资组合优化

投资组合优化是根据某个优化目标从正在考虑的所有投资组合 中选择最佳投资组合(资产分配) 的过程。该目标通常最大化预期回 报等因素,并最小化财务风险等成本,从而最大化投资组合中每增加 一个风险单位对应的回报。优化目标可能会因为投资者对财务风险和预期回报的偏好不同而有所不同。使用量子优化算法可以快速找到一种特定的组合,使得在达到期望收益目标的前提下, 同时确保组合内股票间的相关性尽可能小,从而起到降低风险、优化组合收益表现的效果。

2)掉期清算

掉期是指交易双方同意在一个特定期限内定期交换现金流的合 同。例如常见的固定利率到浮动利率掉期, 双方会根据名义本金来交 换支付固定利率和浮动利率下产生的利息。通过签订这类合同可以对 冲风险或利用对方的相对优势。清算所可以将双方之间的协议转换为 双方分别与清算所进行的两个独立协议,在与多方进行多次互换后会 形成一个掉期网络。清算所可以抵消网络中尽可能多的掉期合同并只 计入净流量, 从而减少与拥有多个合同相关的风险暴露。因此, 找到 新的可净资产组合的能力可以带来更高的效率,这本质上是一个优化 问题。Rosenberg 等人证明了可以使用量子退火器解决交换网络问题,对名义利率和固定利率不同的掉期进行净额结算。

3)信用评分

信用评分是基于个人支付历史、欠款账户、历史信用等关键特征  进行统计分析后的结果, 可以用来代表个人或企业等借贷方的信用度。 这一过程由贷款机构和金融机构负责进行。银行和信用卡公司等贷方使用信用评分来评估向消费者放贷所带来的风险,从而减轻因坏账造成的损失, 其中确定对借款方信誉有影响的关键独立特征非常重要。组合优化方法可用于统计模型或机器学习模型中的特征选择。对 全部特征组合进行训练选择的过程在经典算法中是比较耗时的,使用量子优化方法可快速找到最关键若干特征来确定客户信誉。

4)金融危机预测

在金融市场中,一个金融网络可以被看作是各个金融机构的集合, 网络中每个成员处于相互关联的状态。因此, 在对金融网络的分析中, 能够预测金融危机是十分重要的,但要完成准确的金融危机预测是相  对困难的。金融危机的预测同样可以映射到 NP 困难的 QUBO 问题,该问题求解可利用量子计算在解决优化问题的优势。

5)投资策略融合

在资产管理中,大致分为主动投资管理和被动投资管理两类方法, 还有一类介于主动投资和被动投资之间,比如全天候策略。将 alpha   betaall-weather 等经典策略加以融合,可以实现多元化的投资组合。  通过对特定资产增加杠杆后该资产波动率的变化,再利用风险平价模  型优化投资策略,此时问题变成了一个凸优化问题 利用牛顿下降法  可以得到资产比例的最优解。上述过程是针对特定资产增加特定杠杆  倍数的情况, 如果逐渐增加杠杆倍数,通过循环迭代,在达到预期收  益或者杠杆上限时停止迭代。而这个过程中的双重循环迭代可以通过VQE  QAOA 算法进行加速求解。这类问题可以为投资策略的多元化投资组合方案提供量子计算的二次加速效果,形成多类资产管理的快速决策依据。

(二)量子机器学习

1.量子机器学习算法

机器学习也是具有潜在量子优势的领域。机器学习可以建立数据 间的关系,并通过这些关系建立假设,进而对未来事件进行预测、对 现有数据进行分类以及异常检测。金融领域的这些问题都很重要,涉 及资产的价格以及风险未来演变的不确定性。量子算法在原有经典算 法解决问题能力的基础上赋予了更有效、更精确的计算潜力, 甚至可以达到指数级的加速。

1)量子回归算法

回归是监督学习中的一种, 即训练一个简单模型来逼近实值函 数。在训练过程中需要求得一组合适的参数向量,使表示数据拟合质量的损失函数最小化。近些年来,量子线性回归、量子岭回归、量子逻辑回归等算法相继被提出, 这些量子算法在合理的假设条件  下,使用 HHL 算法等利用量子并行性在多个状态中同时运算,相比经典算法有指数加速效果, 并展现出了量子计算的独特优势。 

2)量子分类算法

分类是将对象放置到预定义组中的过程,而在机器学习中分类的 目标是使用一个由标记数据集拟合的模型来预测新数据点的标签。分 类算法主要包括线性分类方法、最近质心方法、支持向量机方法、基 于神经网络的方法等。在高维空间下, 量子机器学习算法可以更好地 处理复杂的数据结构和关系,因此可能能有更好的分类效果。此外这 些方法中使用的 HHL 等利用量子纠缠并行性的量子算法可以帮助实现平方级与指数级加速。

3)量子聚类算法

聚类是根据特定的度量标准把样本数据分割成不同的类别,使得 同一个类内的数据相似性尽可能大且不在同一个类中的数据差异性 也尽可能大。量子聚类算法在经典聚类算法的基础上进行构造, 其核 心思想仍然是比较量子态之间的距离,同时能够通过量子算法进行初 始质心的优化。量子聚类算法能够解决经典聚类算法在处理高维度大数据时速度慢的问题并带来指数级的加速。

4)量子强化学习

强化学习(Reinforcement LearningRL)是机器学习的方法之一, 用于描述和解决智能体在与环境的交互过程中通过学习策略以达成 回报最大化或实现特定目标的问题。算法自动交易可以归结为一个多 期投资组合选择问题,包括在每个阶段重新平衡投资于选定资产的资本部分。 Rosenberg  等人尝试使用量子退火设备解决这一多阶段优化问题,以获得最优交易轨迹 。该方法不采用任何基于策略或值函数 近似的 RL 技术。由于当前量子设备的硬件限制,量子 RL 方法尚未 直接应用于自动交易。然而,算法交易的组件肯定可以从量子 RL 提供的量子优势中获益。

5)量子生成建模

生成模型(Generative Model)用于学习数据的概率分布。在有监督 学习中,模型作为一组输入/标签对被提供,并学习输入和分类标签之 间的联合概率分布;在无监督学习中, 这些模型可以用来生成给定样 本的新数据。量子态的概率结果是可以天然对应到需要学习数据的概 率分布情况,同时量子纠缠也可以很好地表示不同因子间的相关性,所以量子计算在生成模型中有着天然优势。

6)量子特征提取

特征提取(Feature Extraction)是用于识别、提取数据集属性的技 术, 对于特征的优化选择有助于机器学习任务。量子算法可以通过计 算数据集的属性来帮助进行特征提取。通过将数据编码到量子态,可 以将低维经典数据映射到高维希尔伯特空间中,并用于识别经典算法不可见的特征

主成分分析(Principal Component AnalysisPCA)是从高维数据中提取低维特征的一种广泛使用的算法。经典的主成分分析算法复杂 度对于原始数据集的维数或特征数上是多项式级别的。如果将此类经 典数据映射到量子密度矩阵,则对应的量子 PCA 算法可以以指数级速度执行。

2.量子机器学习应用场景

1)序列预测

预测金融资产价格以及许多其他随时间变化的金融权益可以建 模为一个时间序列学习问题,通过给定一系列历史价格,对未来的价 格做出准确预测。每个金融资产类别如股票、债券、现金或商品可能 具有不同的内部动态, 而通过量子计算机加速的回归、预测模型可以 很好地处理相互关联的大量因子,并用于预测多资产类别投资组合的单日回报,如金融资产定价。

深度学习算法的递归神经网络(Recurrent Neural Network,RNN 在时间序列预测方面越来越有效,其中利用长短期记忆人工神经网络  (LSTM)的方法尤其受欢迎,这些通用算法也逐步被用于金融资产定  价。 Pelger 等人进一步表明,基于 LSTM 预测的改进模型可以实现 比原始深度学习预测以及经典方法(包括 Fama-French  五因子模型)大得多的样本外年化夏普比率。然而, 与经典方法所要求的简单参数校准相比,训练复杂的神经网络通常是一个计算量剧增的过程。参数 化量子电路(Parameterized Quantum Circuit, PQC)在表达性、训练复 杂性和预测性能方面可能优于经典的变分模型。 2020  年剑桥大学 Bausch 的研究已经描述了使用 PQC  来形成递归量子神经网络 RQNN),鲁克海文国家实验室的 Samuel 等人 则研究提出了量子 长短期记忆神经网络(QLSTM)模型的改进方案。尽管对资产定价的 适用性还有待研究,但这两种方法都显示出对特定功能的经典神经网络的潜在改进价值。

2)数据分类

由于对冲基金和投资策略的多样性,投资者很难对此类投资工具 进行分类。此外,对冲基金往往比其他类型的基金披露更少的信息。 要对对冲基金进行分类, 预先定义的类无法正确管理对冲基金未来的 类别。因此, 聚类方法如 k-means 已被用来克服这个问题 并基于对冲基金的可用特征,如资产类别、规模、费用、杠杆、流动性等。

3)异常检测

在金融风控中,债务违约及欺诈检测十分重要。债务的违约会直  接造成提供融资的金融机构贷款损失,并影响与其关联的上下游企业, 产生严重的连锁反应。通常,借贷方偿还能力是根据历史偿还模式来计算的, 而提取及利用这些信息需要合理的信用评分模型, 这一点可以借助辅助特征提取的相关量子算法的计算优势。

借贷过程中, 量子自然语言处理(Quantum Natural Language  Processing QNLP)技术可以通过使用多个数据点来评估信用风险。 例如, QNLP 可以衡量商业贷款中的借款人的态度和创业思维, 也可 以指出借款人一些异常的数据, 并对其进行更多的审查,甚至可以帮助分析贷款过程中借款人的情绪

此外, 借助量子单类支持向量机等量子异常检测算法可以直接通 过训练大量历史数据判别新数据是否处于异常状态,在训练所用的贷 款数据量大的情况下, 量子算法的指数级加速能力具有优势。相比传 统的评分模型及有监督学习分类, 这种方法虽然缺乏解释性, 但减小 了对历史违约情况的依赖程度,并对现实中可能会产生的各种新型欺 诈表现同样较为敏感。量子波尔兹曼机、量子生成对抗网络等生成判 别模型也被证明可以用于欺诈检测,其中, 变分量子玻尔兹曼机方法已被用于分类异常信用卡交易。

除了贷款的信用风险评估,量子机器学习也可用于异常交易数据 及银行流水识别。量子支持向量机、量子神经网络等量子机器学习算法可以用来预测、识别和分类观察是否与特定类别相匹配。因此,这些可以拓展到完全不同的架构下进行训练以识别给定交易数据或银行流水识别数据集中的某种特征类别。

(三)量子模拟算法

1.量子模拟算法

1)量子蒙特卡罗模拟

蒙特卡罗(Monte Carlo)算法利用抽样方法来逼近求解难以用解  析方法或数值方法解决的高维问题。经典蒙特卡罗方法已被用于推理、 积分和优化场景中。量子蒙特卡罗方法利用量子叠加态的并行性,通过振幅估计(Amplitude Estimation, AE)算法实现平方级加速效果,从而降低算法时间复杂度。

金融衍生产品的定价通常涉及到复杂的数学模型和随机变量的 计算, 而这些计算往往无法得到精确的解析解,只能采用数值方法计 算近似解。另外,金融衍生产品的种类繁多, 涉及到的金融工具、市 场组合和交易策略也各不相同,使得定价模型需要根据实际情况进行 不断改进和调整。大多数产品往往是通过在不确定性分布(如正态或 对数正态分布)中重复多次随机抽样来进行数值求解,因此, 蒙特卡罗方法被广泛应用。

2)哈密顿量模拟

哈密顿量是与量子系统总能量有关的运算符。根据薛定谔方程可知,通过操作哈密顿量可以实现量子态的演化。在部分量子优化算法,矩阵被编码成哈密顿量的形式,进而作用到量子态上。

哈密顿量模拟(Hamiltonian Simulation)就是寻找能高效逼近目 标哈密顿演化的酉演化过程,从而在有效时间内完成演化目标。通过 将金融问题映射为相应的薛定谔方程或者哈密顿量,并设计特别的量 子线路对此类复杂金融问题进行模拟,从而实现包括期权定价等在内的问题的求解。

2.量子模拟应用场景

量子模拟可以模拟给定的随机微分方程,主要应用于衍生品定价和风险分析两大场景。

1)衍生品定价

目前, 国际上量子计算在衍生品定价方面的算法研究很多, 应用也非常广,主要包括期权定价和债务抵押债券。

期权定价(Option Pricing)的目标是根据潜在资产价格和其他市 场变量未来波动的不确定性来源, 确定期权的当前公允价值。为了对 公允价值进行数值估计, 生成了大量的市场变量样本,并在此基础上 应用蒙特卡罗积分计算收益函数的期望值, 这恰好可以利用量子蒙特 卡罗积分平方级加速的优势。同时,构造相应过程的哈密顿量也可以对期权价格随时间的演化进行模拟。

债务抵押债券(Collateralized Debt ObligationCDO)是一种由贷款池和其他资产支持的衍生品, 如果贷款违约,这些资产将作为抵押品。CDO 定价通常使用各种连接函数(copula)模型, 需要通过蒙特 卡罗模拟来获得其数值解,因此也可以利用量子蒙特卡罗方法的计算加速优势。

2)风险分析

风险价值(Value at Risk, VaR)是衡量投资损失风险的统计量指 标,用于量化特定时间范围内某一金融资产或证券组合价值的可能损 失程度。 VaR  值作为风险度量指标目前已经被广泛应用于风险管理、 财务分析以及估算风险性资本等。通过对多个市场因素变量进行分布 及相关性建模,可以得到资产组合随这些因素变化的改变量进而得到 VaR 值。这一过程通常可以通过分布建模配合蒙特卡罗法实现。因此, VaR  值计算也可以利用量子蒙特卡罗模拟相关算法来进行分布加载,并实现平方级别的量子加速, 从而应对更高维的资产组合风险分析。

应用领域

算法列举

场景例举

量子组合优化算法

量子退火算法

投资组合优化

掉期清算

信用评分

金融危机预测

投资策略融合

量子近似优化算法

变分量子虚时演化算法

变分量子本征求解器

Grover  自适应性搜索

量子机器学习算法

量子回归算法

序列预测

数据分类

异常检测

量子分类算法

量子聚类算法

量子强化学习

量子生成建模

量子特征提取

量子模拟算法

量子蒙特卡罗模拟

衍生品定价

风险分析

哈密顿量模拟

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/281729.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【FLOOD FILL专题】【蓝桥杯备考训练】:扫雷、动态网格、走迷宫、画图、山峰和山谷【已更新完成】

目录 1、扫雷(Google Kickstart2014 Round C Problem A) 2、动态网格(Google Kickstart2015 Round D Problem A) 3、走迷宫(模板) 4、画图(第六次CCF计算机软件能力认证) 5、山…

【蓝桥杯】RMQ(Range Minimum/Maximum Query)

一.概述 RMQ问题,是求区间最大值或最小值,即范围最值问题。 暴力解法是对每个询问区间循环求解,设区间长度n,询问次数m,则复杂度是O ( nm )。 一般还可以使用线段树求解,复杂度是O(mlogn)。 但还有一种…

Postgresql数据库入门简介

Postgresql入门 1.Postgresql数据库简介 PostgresQL是一个功能强大的开源数据库系统。经过长达15年以上的积极开发和不断改进,PostgreSQL已在可靠性、稳定性、数据一致性等获得了业内极高的声誉。目前PostgreSql可以运行在所有主流操作系统上,包括Linux…

会员项目定价卡css3特效

会员项目定价卡css3特效,源码由HTMLCSSJS组成,记事本打开源码文件可以进行内容文字之类的修改,双击html文件可以本地运行效果,也可以上传到服务器里面 下载地址 会员项目定价卡css3特效代码

【爬虫】web自动化和接口自动化

专栏文章索引:爬虫 目录 一、介绍 二、推荐 1.接口自动化 2.Web自动化 一、介绍 爬虫技术一般可以分为两种类型:接口自动化和web自动化。下面是它们的简要介绍: 1.接口自动化 接口自动化技术的主要目的是通过模拟HTTP请求来实现自动化…

Zama:链上隐私新标准

1. 引言 揭示 Web3 中全同态加密的潜在用例,并深入研究 Zama 的四种主要开源产品: TFHE-rsConcreteConcrete MLfhEVM 众所周知,在当今时代,数据隐私问题与互联网诞生以来一样普遍。仅 Yahoo!、Equifax 和 Marriott 的数据泄露就…

java动态规划学习笔记

学习笔记目录,这里记录个大纲,详情点链接 背包问题 01背包问题综述 01背包问题(二维数组)https://blog.csdn.net/m0_73065928/article/details/136794406?spm1001.2014.3001.5501 01背包问题(滚动数组&#xff09…

LeetCode 热题 100 | 堆(一)

目录 1 什么是堆排序 1.1 什么是堆 1.2 如何构建堆 1.3 举例说明 2 215. 数组中的第 K 个最大元素 2.1 子树大根化 2.2 遍历所有子树 2.3 弹出栈顶元素 2.4 完整代码 菜鸟做题,语言是 C 1 什么是堆排序 1.1 什么是堆 堆的定义和分类&#xff…

ECharts5 概念篇1

图表容器及大小 初始化 在 HTML 中定义有宽度和高度的父容器&#xff08;推荐&#xff09; 通常来说&#xff0c;需要在 HTML 中先定义一个 <div> 节点&#xff0c;并且通过 CSS 使得该节点具有宽度和高度。初始化的时候&#xff0c;传入该节点&#xff0c;图表的大小默认…

海外客户获取难?海外云手机助力电商引流!

海外电商面临的市场竞争激烈&#xff0c;如何在海外市场获客成为了摆在许多卖家面前的难题。而在这个问题的解决方案中&#xff0c;海外云手机崭露头角&#xff0c;成为助力电商引流的新利器。 在当前市场中&#xff0c;云手机主要用于游戏挂机&#xff0c;但其潜力在海外电商领…

四、C语言中的数组:如何输入与输出二维数组(数组,完)

本章的学习内容如下 四、C语言中的数组&#xff1a;数组的创建与初始化四、C语言中的数组&#xff1a;数组的输入与元素个数C语言—第6次作业—十道代码题掌握一维数组四、C语言中的数组&#xff1a;二维数组 1.二维数组的输入与输出 当我们输入一维数组时需要一个循环来遍历…

AWS监控,AWS 性能监控工具

监控云部署的性能是 IT 环境正常运行的内在条件。AWS 云是一个架构良好的框架&#xff0c;管理员可以使用专用的AWS 性能监控工具增强服务的功能。执行AWS监视是为了跟踪在AWS环境中积极运行的应用程序工作负载和资源。AWS监视器跟踪各种AWS云指标&#xff0c;以帮助提高在其上…

刷题DAY30 | LeetCode 332-重新安排行程 51-N皇后 37-解数独

332 重新安排行程&#xff08;hard&#xff09; 给你一份航线列表 tickets &#xff0c;其中 tickets[i] [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。 所有这些机票都属于一个从 JFK&#xff08;肯尼迪国际机场&#xff09;出发的先生&…

机器学习知识点复习 下(保研、复试、面试)百面机器学习笔记

机器学习知识点复习下 第八章、采样1.采样的作用 第九章、前向神经网络1.多层感知机与布尔函数2.神经网络中的激活函数3.多层感知机的反向传播算法4.神经网络训练技巧5.深度卷积神经网络6.深度残差网络 第十章、循环神经网络1.循环神经网络和卷积神经网络2.循环神经网络的梯度消…

【前端Vue】Vue3+Pinia小兔鲜电商项目第2篇:什么是pinia,1. 创建空Vue项目【附代码文档】

全套笔记资料代码移步&#xff1a; 前往gitee仓库查看 感兴趣的小伙伴可以自取哦&#xff0c;欢迎大家点赞转发~ 全套教程部分目录&#xff1a; 部分文件图片&#xff1a; 什么是pinia Pinia 是 Vue 的专属状态管理库&#xff0c;可以实现跨组件或页面共享状态&#xff0c;是…

数字电源浅析

电力电子技术是关于能量转换、调节、控制和管理等方面的学科,而数字电源则是电力电子技术的一种应用,是利用数字电路技术实现电源控制和管理的新型电源。 一、什么是数字电源 数字电源是一种数字控制的电源设备,可以通过数字控制芯片(DSP、MCU等)实现输出电压、电流、功…

TypeScript在学习(0)

1.什么是TypeScript? 答:TypeScript 是一种由微软开发的自由和开源的编程语言。它是 JavaScript 的一个超集&#xff0c;而且本质上向这个语言添加了可选的静态类型和基于类的面向对象编程。 个人浅见&#xff0c;我一直把ts简单理解成&#xff0c;其实就是javascript上多了…

插入排序+希尔排序

目录 插入排序&#xff1a; 希尔排序&#xff1a; 插入排序&#xff1a; 注意这里不要将插入排序和冒泡排序弄混&#xff1a; 插入排序是将数据不断放入前一个有序数列&#xff1a; // 插入排序 void InsertSort(int* a, int n) {for (int j 1; j < n; j){for (int i j;…

【嵌入式硬件】步进电机

1.步进电机简介 1.1步进电机基本原理 步进电机的英文是stepping motor。step的中文意思是行走、迈步。所以仅从字面上我们就可以得知,步进电机就是一步一步移动的电动机。说的官方一点儿,步进电机是一种将电脉冲信号转换成相应角位移或者线位移的电动机(直线电机)。下图为…

什么是物联网远程模块

在数字化和信息化的浪潮下&#xff0c;物联网技术正在以惊人的速度改变着我们的生活和生产方式。物联网远程模块&#xff0c;作为物联网技术的核心组件之一&#xff0c;正引领着这场变革。HiWoo Box就是这样一款出色的物联网远程模块&#xff0c;它通过支持远程透传、远程锁机、…