Tensorflow 2.0 常见函数用法(一)

文章目录

  • 0. 基础用法
  • 1. tf.cast
  • 2. tf.keras.layers.Dense
  • 3. tf.variable_scope
  • 4. tf.squeeze
  • 5. tf.math.multiply


0. 基础用法

Tensorflow 的用法不定期更新遇到的一些用法,之前已经包含了基础用法参考这里 ,具体包含如下图的方法:
在这里插入图片描述
本文介绍其他常见的方法。

1. tf.cast

张量类型强制转换

官方用法:

tf.cast(x, dtype, name=None
)

示例:

x = tf.constant([1.8, 2.2], dtype=tf.float32)
print(tf.cast(x, tf.int32))# 输出
tf.Tensor([1 2], shape=(2,), dtype=int32)

2. tf.keras.layers.Dense

构建一个全连接层

在1.0中是 tf.layers.dense ,2.0中可以用下面方法兼容:

import tensorflow.compat.v1 as tf
tf.layers.dense(xxx)

官方用法:

tf.keras.layers.Dense(units,activation=None,use_bias=True,kernel_initializer='glorot_uniform',bias_initializer='zeros',kernel_regularizer=None,bias_regularizer=None,activity_regularizer=None,kernel_constraint=None,bias_constraint=None,**kwargs
)

3. tf.variable_scope

这是 v1 版本的用法,用于管理变量

官方用法:

tf.compat.v1.variable_scope(name_or_scope,default_name=None,values=None,initializer=None,regularizer=None,caching_device=None,partitioner=None,custom_getter=None,reuse=None,dtype=None,use_resource=None,constraint=None,auxiliary_name_scope=True
)

示例:

import tensorflow as tf
with tf.variable_scope("one"):o=tf.get_variable("f",[1])
with tf.variable_scope("two"):o1=tf.get_variable("f",[1])# 抛错,因为变量的作用范围不一样
# 一个作用域是one/f,一个作用域是two/f
assert o == o1

4. tf.squeeze

从张量的形状中移除大小为1的维度。该函数返回一个张量,这个张量是将原始input中所有维度为1的那些维都删掉的结果。
axis 可以用来指定要删掉的为1的维度,此处要注意指定的维度必须确保其是1,否则会报错。

官方用法:

tf.squeeze(input, axis=None, name=None
)

示例:

# 注意,a的shape是1*6,即存在一个大小为1的维度
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[1, 6])
print(a)
b = tf.squeeze(a, [0]) # 删除第0个维度为1的
# b = tf.squeeze(a) 的结果是一样的
print(b)# 输出
tf.Tensor([[1 2 3 4 5 6]], shape=(1, 6), dtype=int32)
tf.Tensor([1 2 3 4 5 6], shape=(6,), dtype=int32)
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[6, 1])
print(a)
b = tf.squeeze(a, [1])
print(b)# 输出
tf.Tensor(
[[1][2][3][4][5][6]], shape=(6, 1), dtype=int32)
tf.Tensor([1 2 3 4 5 6], shape=(6,), dtype=int32)
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
print(a)
b = tf.squeeze(a) # 如果不存在大小为1的维度,那么保持不变
print(b)# 输出
tf.Tensor(
[[1 2 3][4 5 6]], shape=(2, 3), dtype=int32)
tf.Tensor(
[[1 2 3][4 5 6]], shape=(2, 3), dtype=int32)

5. tf.math.multiply

元素相乘

在 1.0 中是 tf.multiply
官方用法:

tf.math.multiply(x, y, name=None
)

示例:

a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
print(tf.multiply(a, 2))
print(tf.multiply(a, a))# 输出
tf.Tensor(
[[ 2  4  6][ 8 10 12]], shape=(2, 3), dtype=int32)tf.Tensor(
[[ 1  4  9][16 25 36]], shape=(2, 3), dtype=int32)
x = tf.ones([1, 2]);
y = tf.ones([2, 1]);
print(x * y)  # Taking advantage of operator overriding
print(tf.multiply(x, y))# 输出,如果维度不一致,会尝试匹配维度
tf.Tensor(
[[1. 1.][1. 1.]], shape=(2, 2), dtype=float32)
tf.Tensor(
[[1. 1.][1. 1.]], shape=(2, 2), dtype=float32)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/282978.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

哨兵位、链表的链接

哨兵位: 通俗的话讲就是额外开辟一块空间,指向链表的头部。 合并两个有序链表 已解答 简单 相关标签 相关企业 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入&#…

基于Springboot的疫情物资管理系统(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的疫情物资管理系统(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构…

大数据主要组件HDFS Iceberg Hadoop spark介绍

HDFSIceberghadoopspark HDFS 面向PB级数据存储的分布式文件系统,可以存储任意类型与格式的数据文件,包括结构化的数据以及非结构化的数据。HDFS将导入的大数据文件切割成小数据块,均匀分布到服务器集群中的各个节点,并且每个数据…

RuoYi 自定义字典列表页面编码翻译

“字典数据”单独维护,而不是使用系统自带的字典表,应该如何使用这样的字典信息呢? 系统字典的使用,请参考: 《RuoYi列表页面字典翻译的实现》 https://blog.csdn.net/lxyoucan/article/details/136877238 需求说明…

Day42:WEB攻防-PHP应用MYSQL架构SQL注入跨库查询文件读写权限操作

目录 PHP-MYSQL-Web组成架构 PHP-MYSQL-SQL常规查询 手工注入 PHP-MYSQL-SQL跨库查询 跨库注入 PHP-MYSQL-SQL文件读写 知识点: 1、PHP-MYSQL-SQL注入-常规查询 2、PHP-MYSQL-SQL注入-跨库查询 3、PHP-MYSQL-SQL注入-文件读写 MYSQL注入:&#xff…

Java 基础学习(二十)Maven、XML与WebServer

1 Maven 1.1 什么是Maven 1.1.1 Maven概述 Maven是一种流行的构建工具,用于管理Java项目的构建,依赖管理和项目信息管理。它使用XML文件来定义项目结构和构建步骤,并使用插件来执行各种构建任务。Maven可以自动下载项目依赖项并管理它们的…

VMware 虚拟机安装 CentOS Stream 9【图文详细教程】

系统需要开启虚拟化 VMware Pro 17 安装:https://www.yuque.com/u27599042/ccv8wh/ztmn0vkg3iimqyed CentOS Stream 9 镜像下载 https://www.centos.org/centos-stream/根据你电脑的操作系统类型,选择点击下载 创建虚拟机 在 VMware 中,…

专为智能设备安全打造 | 基于ACM32 MCU的智能断路器方案

随着我国电网建设的快速发展,数字化变电站成为建设和研究的热点,数字化变电站的核心在于一次设备的智能化与二次设备的网络化,对于断路器这种极其重要的电力一次设备而言,其智能化的实现有十分重要的意义,断路器智能化…

Jupyter服务器端为R语言安装readr包

1.登录debian服务器 方式1.Windows10中可利用putty登录linux服务器 方式2.自从搭建了Jupyter服务器后,还可以从juypyter的终端来登录linux服务器 2.进入R语言命令行 3.安装readr包 >install.packages(‘readr’) …

2.6、媒体查询(mediaquery)

概述 媒体查询作为响应式设计的核心,在移动设备上应用十分广泛。媒体查询可根据不同设备类型或同设备不同状态修改应用的样式。媒体查询常用于下面两种场景: 针对设备和应用的属性信息(比如显示区域、深浅色、分辨率),设计出相匹配的布局。当屏幕发生动态改变时(比如分屏…

Kubernetes自动化配置部署

在新建工程中,使用k8s的devops服务,自动化部署项目 1、在搭建好k8s的集群中,确认已开启devops服务; 2、新建Maven项目之后,创建dockerfile、deploy和Jenkins文件 例如: Dockerfile FROM bairong.k8s.m…

virtualBox虚拟机的Ubuntu系统下vscode 的标题栏无法显示,打开文件对话框显示不正常。

遇到问题:vscode 的标题栏无法显示,打开文件对话框显示不正常。打开文件对话框显示闪烁无法打开文件。如下图所示 解决办法: (1)Ctrl Shift P 输入 Preferences: Configure Runtime Arguments 搜“"disable-h…

Linux:权限的概念与理解

目录 1. Linux权限的概念 2. Linux权限管理 01.文件访问者的分类 02.文件类型和访问权限 03.文件权限值的表示方法 04. 文件访问权限的相关设置方法 3. 使用 sudo分配权限 4. 目录的权限 ---------- 权限 用户角色(具体的人) 文件权限属性 ---------- 1. Linux权限的…

QT tableWidget横向纵向设置

横向控件 要设置QTabWidget选项卡的字体方向,可以使用QTabWidget的setTabPosition()方法。通过传递Qt枚举值QTabWidget.east或QTabWidget.west作为参数,可以设置选项卡的字体方向为从左到右或从右到左。 myTabWidget QTabWidget() myTabWidget.setTabP…

么样才能用最便捷的方式为Mac提速呢?

Mac是现代人日常工作时必不可少的工具,尤其是在居家办公已经屡见不鲜的当下。视频会议、文档传送、视频剪辑等等。它在工作中扮演的角色越来越重要,所以也导致了它的流畅程度可以在很大程度上影响人们一整天的工作效率和心情。 但是影响Mac的运行和响应速…

Gitlab的流水线任务【实现每小时自动测试 dev分支的更新】

背景 在现代软件开发实践中,持续集成(Continuous Integration, CI)是确保代码质量和快速响应软件缺陷的关键策略。GitLab 提供了强大的 CI/CD 功能,允许开发者自动化测试和部署流程。本文将介绍如何设置 GitLab 流水线计划任务&a…

如何使用Android平板公网访问本地Linux code-server

文章目录 1.ubuntu本地安装code-server2. 安装cpolar内网穿透3. 创建隧道映射本地端口4. 安卓平板测试访问5.固定域名公网地址6.结语 1.ubuntu本地安装code-server 准备一台虚拟机,Ubuntu或者centos都可以,这里以VMwhere ubuntu系统为例 下载code server服务,浏览器…

网络: 数据链路层

数据链路层: 数据帧的封装与传输 以太网数据帧 源地址和目的地址是指网卡的硬件地址(也叫MAC地址), 长度是48位,是在网卡出厂时固化的;帧协议类型字段有三种值,分别对应IP、ARP、RARP;帧末尾是CRC校验码 以太网 "以太网" 不是一种具体的网络, 而是一种技术标准; 既…

[项目前置]如何用webbench进行压力测试

测试软件 采用webbench进行服务器性能测试。 Webbench是知名的网站压力测试工具,它是由Lionbridge公司开发。 webbench的标准测试可以向我们展示服务器的两项内容: 每秒钟相应请求数 和 每秒钟传输数据量 webbench测试原理是,创建指定数…

Prompt进阶系列5:LangGPT(提示链Prompt Chain)--提升模型鲁棒性

Prompt进阶系列5:LangGPT(提示链Prompt Chain)–提升模型鲁棒性 随着对大模型的应用实践的深入,许多大模型的使用者, Prompt 创作者对大模型的应用越来越得心应手。和 Prompt 有关的各种学习资料,各种优质内容也不断涌现。关于 Prompt 的实践…