Redis|集群 Cluster

文章目录

    • 是什么
    • 能干嘛
    • 集群算法-分片-槽位slot
      • redis集群的槽位slot
      • redis集群的分片
      • 分片+槽位的优势
      • slot槽位映射——业界的3种解决方案
        • 小厂:哈希取余分区
        • 中厂:一致性哈希算法分区
        • 大厂:哈希槽分区
      • 面试题:为什么 Redis 集群的最大槽数是16384个?
    • 集群环境案例步骤
    • 集群常用操作命令和CRC16算法分析

是什么

  • 定义:由于数据量过大,单个Master复制集难以承担,因此需要对多个复制集进行集群,形成水平扩展。每个复制集只负责存储整个数据集 的一部分,这就是Redis的集群,其作用是提供在多个Redis节点间共享数据的程序集。
  • 官网:https://redis.io/docs/reference/cluster-spec/
  • 一图

在这里插入图片描述

  • 一句话:Redis集群是一个提供在多个Redis节点间共享数据的程序集,Redis集群可以支持多个master
  • Redis 集群是 Redis 提供的分布式解决方案,用于管理大规模数据集和高并发访问。它通过分片(sharding)将数据分布在多个节点上,提供高可用性和扩展性。

在这里插入图片描述

能干嘛

  • Redis集群支持多个master,每个master又可以挂载多个slave
    • 读写分离
    • 支持数据的高可用
    • 支持海量数据的读写存储操作
  • 由于Cluster自带Sentinel的故障转移机制,内置了高可用的支持,无需再去使用哨兵功能
  • 客户端与Redis的节点连接,不再需要连接集群中所有的节点,只需要任意连接集群中的一个可用节点即可
  • 槽位slot负责分配到各个物理服务节点,由对应的集群来负责维护节点、插槽和数据之间的关系

集群算法-分片-槽位slot

  • 官网出处

在这里插入图片描述
在这里插入图片描述

redis集群的槽位slot

  • Redis集群的数据分片
  • Redis集群没有使用一致性hash,而是引入了哈希槽的概念。
    • 一致性哈希是一种特殊的哈希算法,用于解决传统哈希(如取模哈希)在分布式系统中的节点扩容和缩容问题。它将整个哈希值空间组织成一个虚拟的环状结构(哈希环),数据和服务器(节点)都映射到这个哈希环上,以实现数据的分布。
    • 哈希槽主要用于 Redis Cluster 这样的分布式数据库系统,用于数据分片和管理。Redis Cluster 采用16384个哈希槽,所有 key 都会被映射到 0~16383 之间的某个哈希槽中。

在这里插入图片描述

  • Redis集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽
  • 举个例子,比如当前集群有3个节点,那么:

在这里插入图片描述

redis集群的分片

  • 分片是什么:使用Redis集群时我们会将存储的数据分散到多台redis机器上,这称为分片。简言之,集群中的每个Redis实例都被认为是整个数据的一个分片。
  • 如何找到给定key的分片:为了找到给定key的分片,我们对key进行CRC16(key)算法处理并通过对总分片数量取模。然后,使用确定性哈希函数,这意味着给定的key将多次始终映射到同一个分片,我们可以推断将来读取特定key的位置。

分片+槽位的优势

  • 最大优势:方便扩容/缩容和数据分派查找
  • 这种结构很容易添加或者删除节点,比如如果我想添加个节点D,我需要从节点A,B,C中得部分槽位到D上。如果我想移除节点A,需要将A中的槽移动到B和C节点上,然后将没有任何槽的节点从集群中移除即可。
  • 由于一个结点将哈希槽移动到另一个节点不会停止服务,所以无论添加删除或者改变某个节点的哈希槽的数量都不会造成集群不可用的状态。
  • 扩容时,Redis 不是按顺序转移槽位,而是按节点的负载来选择迁移策略。目的是让槽位分布尽量均衡,而不是严格按 A ➝ B ➝ C ➝ D 顺序迁移。直接从 A、B 迁移给 D,减少额外的中间数据传输,提高效率。这样可以最小化数据重分布的影响,确保集群稳定运行。

slot槽位映射——业界的3种解决方案

小厂:哈希取余分区

在这里插入图片描述

  • 2亿条记录就是2亿个k,v,我们单机承受不了,必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:hash(key) % N个机器台数,计算出哈希值,用来决定数据映射到哪一个节点上。
  • 优点:简单粗暴,直接有效,只需要预估好数据规划好节点,例如3台、8台、10台,就能保证一段时间的数据 支撑。使用Hash算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求 (并维护这些请求的信息), 起到负载均衡+分而治之的作用。
  • 缺点:原来规划好的节点,进行扩容或者缩容就比较麻烦了,不管扩缩,每次数据变动导致节点有变动,比如第一次set k1 v1在第一台机器上,第二次我扩容后要去修改k1的值,set k1 v2,但是这个时候落在的扩容后的那台机器上,映射关系需要重新进行计算,在服务器个数固定不变时没有问题,如果需要弹性扩容或故障停机的情况下,原来的取模公式就会发生变化: Hash(key)/3会变成Hash(key) /?。此时地址经过取余运算的结果将发生很大变化,根据公式获取的服务器也会变得不可控。 某个redis机器宕机了,由于台数数量变化,会导致hash取余全部数据重新洗牌。
中厂:一致性哈希算法分区
  • 是什么:一致性Hash算法背景是在1997年由麻省理工学院提出的,设计目标是为了解决分布式缓存数据变动和映射问题,某个机器宕机了,分母数量改变了,自然取余数不行了

  • 能干嘛:提出一致性Hash解决方案。目的是当服务器个数发生变动时,尽量减少影响客户端到服务器的映射关系

  • 三大步骤:

    1. 算法构建一致性哈希环

      • 一致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间[ 0 0 0 2 32 − 1 2^{32}-1 2321],这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连( 0 = 2 32 0 = 2^{32} 0=232),这样让它逻辑上形成了一个环形空间。
      • 它也是按照使用取模的方法,前面笔记介绍的节点取模法是对节点(服务器)的数量进行取模。而一致性Hash算法是对 2 32 2^{32} 232取模,简单来说,一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为 0 ~ 2 32 − 1 0~2^{32}-1 02321(即哈希值是一个32位无符号整形),整个哈希环如下图:整个空间按顺时针方向组织,圆环的正上方的点代表0,O点右侧的第一个点代表1,以此类推,2、3、4、……直到 2 32 − 1 2^{32}-1 2321,也就是说0点左侧的第一个点代表 2 32 − 1 2^{32}-1 2321,0和 2 32 − 1 2^{32}-1 2321在零点中方向重合,我们把这个由 2 32 2^{32} 232个点组成的圆环称为Hash环。
        在这里插入图片描述
    2. redis服务器IP节点映射

      • 将集群中各个IP节点映射到环上的某一个位置。
      • 将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假如4个节点NodeA、B、C、D,经过IP地址的哈希函数计算(hash(ip)),使用IP地址哈希后在环空间的位置如下:在这里插入图片描述
    3. key落到服务器的落键规则

      • 当我们需要存储一个kv键值对时,首先计算key的hash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。
      • 如我们有Object A、 Object B、 Object C. object D四个key数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。在这里插入图片描述
  • 优点:

    • 一致性哈希算法的容错性:

      • 假设Node C宕机,可以看到此时对象A、B、D不会受到影响。
      • 一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务悉(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。
      • 简单说,就是C挂了,受到影响的只是B、C之间的数据且这些数据会转移到D进行存储。在这里插入图片描述
    • 一致性哈希算法的扩展性:

      • 数据量增加了,需要增加一台节点NodeX,X的位置在A和B之间,那收到影响的也就是A到X之间的数据,重新把A到X的数据录入到X上即可,不会导致hash取余全部数据重新洗牌。在这里插入图片描述
  • 缺点:一致性哈希算法的数据倾斜问题,容易头重脚轻。

    • 一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题
    • 例如系统中只有两台服务器:在这里插入图片描述
  • 小总结

    • 为了在节点数目发生改变时尽可能少的迁移数据
    • 将所有的存储节点排列在收尾相接的Hash环上,每个key在计算Hash后会顺时针找到临近的存储节点存放。而当有节点加入或退出时仅影响该节点在Hash环上顺时针相邻的后续节点。
    • 优点:加入和删除节点只影响哈希环中顺时针方向的相邻的节点,对其他节点无影响。
    • 缺点:数据的分布和节点的位置有关,因为这些节点不是均匀的分布在哈希环上的,所以数据在进行存储时达不到均匀分布的效果。
大厂:哈希槽分区
  • 是什么?HASH_SLOT = CRC16(key) mod 16384

    • 为什么出现?
      • 上面提到,一致性哈希算法会存在数据倾斜的问题
      • 哈希槽实质就是一个数组,数组 [ 0 0 0 2 14 − 1 2^{14} - 1 2141 ] 形成hash slot空间。 2 14 = 16384 2^{14} = 16384 214=16384
    • 能干什么?
      • 解决均匀分配的问题,在数据和节点之间又加入了一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系,现在就相当于节点上放的是槽,槽里面放的是数据。在这里插入图片描述
      • 槽解决的是粒度问题,相当于把粒度变大了,这样便于数据移动。哈希解决的是映射问题,使用key的哈希值来计算所在的槽,便于数据分配
    • 多少个hash槽
      • 一个集群只能有16384个槽,编号0-16383( 0 0 0- 2 14 − 1 2^{14} - 1 2141)。这些槽会分配给集群中的所有主节点,分配策略没有要求。
      • 集群会记录节点和槽的对应关系,解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取模,余数是几key就落入对应的槽里。
      • HASH_SLOT = CRC16(key) mod 16384。以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。
  • 哈希槽计算

Redis集群中内置了16384个哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。当需要在Redis集群中放置一个key-valuel时,redis先对key使用crc16算法算出一个结果然后用结果对16384求余数[ CRC16(key) % 16384],这样每个key都会对应一个编号在0-16383之间的哈希槽,也就是映射到某个节点上。如下代码,key之A、B在Node2, key之C落在Node3上

在这里插入图片描述

面试题:为什么 Redis 集群的最大槽数是16384个?

集群环境案例步骤

集群常用操作命令和CRC16算法分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/28384.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DeepSeek R1助力,腾讯AI代码助手解锁音乐创作新

目录 1. DeepSeekR1模型简介2. 歌词创作流程2.1 准备工作2.2 歌词生成技巧 3. 音乐制作环节3.1 主流AI音乐生成平台 4. 歌曲欣赏5. 总结展望 1. DeepSeekR1模型简介 腾讯AI代码助手最新推出的DeepSeekR1模型不仅在代码生成方面表现出色,其强大的自然语言处理能力也…

学习threejs,使用LineBasicMaterial基础线材质

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️THREE.LineBasicMaterial1.…

Spring Boot 整合 JMS-ActiveMQ,并安装 ActiveMQ

1. 安装 ActiveMQ 1.1 下载 ActiveMQ 访问 ActiveMQ 官方下载页面,根据你的操作系统选择合适的版本进行下载。这里以 Linux 系统,Java环境1.8版本为例,下载 apache-activemq-5.16.7-bin.tar.gz。 1.2 解压文件 将下载的压缩包解压到指定目…

C语言学习笔记-初阶(28)操作符详解2

1. 逗号操作符、逗号表达式 exp1, exp2, exp3, …expN 逗号表达式,就是用逗号隔开的多个表达式。 逗号表达式,从左向右依次执行。整个表达式的结果是最后一个表达式的结果。 //代码1 int a 1; int b 2; int c (a>b, ab10, a, ba1);//逗号表达…

《机器学习数学基础》补充资料:连续正态分布随机变量的熵

《机器学习数学基础》第 416 页给出了连续型随机变量的熵的定义,并且在第 417 页以正态分布为例,给出了符合 N ( 0 , σ 2 ) N(0,\sigma^2) N(0,σ2) 的随机变量的熵。 注意:在第 4 次印刷以及之前的版本中,此处有误&#xff0c…

ReconDreamer:通过在线恢复构建驾驶场景重建的世界模型

24年11月来自极佳科技、北大、理想汽车和中科院自动化所的论文“ReconDreamer: Crafting World Models for Driving Scene Reconstruction via Online Restoration”。 ReconDreamer,通过逐步整合世界模型知识来增强驾驶场景重建。具体来说,DriveRestor…

写一个python程序,找出1000以内的质数

这是一道常考的题,大家一定得学会。 解题思路: 需要理解质数的定义。质数是大于1的自然数,除了1和它本身外没有其他因数。所以,我需要生成2到1000之间的所有数,然后检查每个数是否是质数。 def find_primes(n):&quo…

软考-数据库开发工程师-3.1-数据结构-线性结构

第3章内容比较多,内容考试分数占比较大,6分左右 线性表 1、线性表的定义 一个线性表是n个元素的有限序列(n≥0),通常表示为(a1,a2, a3,…an). 2、线性表的顺序存储(顺序表) 是指用一组地址连续的存储单元依次存储线性表中的数据元…

【技术点】RAG

本文非自己原创,只是学习过程中资料的总结合并。具体来自于以下链接 https://cloud.google.com/use-cases/retrieval-augmented-generation 一文读懂:大模型RAG(检索增强生成)含高级方法 RAG基础 定义 RAG(检索增…

Pytorch的一小步,昇腾芯片的一大步

Pytorch的一小步,昇腾芯片的一大步 相信在AI圈的人多多少少都看到了最近的信息:PyTorch最新2.1版本宣布支持华为昇腾芯片! 1、 发生了什么事儿? 在2023年10月4日PyTorch 2.1版本的发布博客上,PyTorch介绍的beta版本…

Varjo XR-4 混合现实驾驶仿真解决方案

企业级虚拟与混合现实解决方案提供商Varjo今日宣布,其XR-4系列设备已与VI-grade的车辆开发平台VI-WorldSim实现兼容。自2025.1版本起,VI-WorldSim将通过虚幻引擎5的OpenXR接口支持Varjo XR-4系列头显。 VI-WorldSim是一个集成式图形环境,可加…

STM32单片机芯片与内部114 DSP-变换运算 实数 复数 FFT IFFT 不限制点数

目录 一、ST 官方汇编 FFT 库(64点, 256 点和 1024 点) 1、cr4_fft_xxx_stm32 2、计算幅频响应 3、计算相频响应 二、复数浮点 FFT、IFFT(支持单精度和双精度) 1、基础支持 2、单精度函数 arm_cfft_f32 3、双精…

【橘子python】在vscode中配置py3

一、简介 这个故事来源于一个奸商,我在某购物平台买了一个pyCharm的那啥码,承诺永不过期,我刚用了不到两个月就拉了。然后再去找商家,发现已经注销跑路了。属实是可恶。 那没办法了,那就用vscode吧,该说不…

LangChain-08 Query SQL DB 通过GPT自动查询SQL

我们需要下载一个 LangChain 官方提供的本地小数据库。 安装依赖 SQL: https://raw.githubusercontent.com/lerocha/chinook-database/master/ChinookDatabase/DataSources/Chinook_Sqlite.sql Shell: pip install --upgrade --quiet langchain-core langchain-community la…

电脑技巧:硬件检测工具 HWiNFO 8.16版本更新功能介绍

目录 一、版本8.16更新说明 二、安装说明 三、使用说明 HWiNFO是一个专业的系统信息检测工具,支持最新的技术和标准,可检查计算机硬件的所有信息。HWiNFO 主要可以显示出处理器、主板及芯片组、PCMCIA接口、BIOS版本、内存等信息,另外HWiN…

【一.大模型认知与核心原理篇】【3. GPT解密:大模型背后的核心技术】

各位科技爱好者,今天咱们要干一票大的——把GPT这个AI界的当红顶流扒个底朝天。你以为ChatGPT会聊天就是它的全部能耐?Too young!这货肚子里藏的可是价值百亿美金的黑科技。咱们不整那些虚头巴脑的概念,直接上手拆解它的技术内脏,让你看看这个每天被调戏的聊天机器人,到底…

VisActor/VTable - 自定义图标

在 VTable 中,我们可以使用自定义图标功能来提高表格的可读性和视觉效果。可以通过 icon 和 headerIcon 来分别分别配置表头及 body 显示的单元格图标: headerIcon 表头单元格图标配置,它可以帮助我们设置表头的图标样式。配置项根据 Column…

transformer稀疏注意力机制的发展

2017年谷歌发表史诗级的论文Attention is All you need提出Transformer,一种全新的神经网络。 存在一个问题训练的时候每个字都要训练,每增加一个token,算力需求是平方的往上翻的,输入10000个token,苏姚计算10000*1000…

不同类型光谱相机的技术差异比较

一、波段数量与连续性 ‌多光谱相机‌ 波段数:通常4-9个离散波段,光谱范围集中于400-1000nm‌。 数据特征:光谱呈阶梯状,无法连续覆盖,适用于中等精度需求场景(如植被分类)‌。 ‌高光谱相机…

Redis——缓存穿透、击穿、雪崩

缓存穿透 什么是缓存穿透 缓存穿透说简单点就是大量请求的 key 根本不存在于缓存中,导致请求直接到了数据库上,根本没有经过缓存这一层。举个例子:某个黑客故意制造我们缓存中不存在的 key 发起大量请求,导致大量请求落到数据库…