大数据Spark--入门

文章目录

  • Spark 概述
    • Spark 是什么
    • Spark and Hadoop
    • Spark and Hadoop
    • Spark 核心模块
  • Spark 简单上手
    • 创建Maven项目
      • 增加 Scala 插件
      • 增加依赖关系
      • WordCount
      • 异常处理

Spark 概述

Spark 所需资料
链接:https://pan.baidu.com/s/12iaW68vriL6i-xI1kmr0_g?pwd=m4zc
提取码:m4zc

Spark 是什么

Spark 是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。

Spark and Hadoop

  • 首先从时间节点上来看:
    • Hadoop
      • 2006年1月,Doug Cutting加入Yahoo,领导Hadoop的开发
      • 2008年1月,Hadoop成为Apache顶级项目
      • 2011年1.0正式发布
      • 2012年3月稳定版发布
      • 2013年10月发布2.X (Yarn)版本
    • Spark
      • 2009年,Spark诞生于伯克利大学的AMPLab实验室
      • 2010年,伯克利大学正式开源了Spark项目
      • 2013年6月,Spark成为了Apache基金会下的项目
      • 2014年2月,Spark以飞快的速度成为了Apache的顶级项目
      • 2015年至今,Spark变得愈发火爆,大量的国内公司开始重点部署或者使用Spark
  • 从功能上看:
    • Hadoop
      • Hadoop是由java语言编写的,在分布式服务器集群上存储海量数据并运行分布式
        分析应用的开源框架
      • 作为Hadoop 分布式文件系统,HDFS处于Hadoop生态圈的最下层,存储着所有
        的数据,支持着 Hadoop 的所有服务。它的理论基础源于 Google 的TheGoogleFileSystem 这篇论文,它是GFS的开源实现。
      • MapReduce 是一种编程模型,Hadoop根据Google的MapReduce 论文将其实现,
        作为Hadoop 的分布式计算模型,是Hadoop的核心。基于这个框架,分布式并行
        程序的编写变得异常简单。综合了HDFS的分布式存储和MapReduce的分布式计
        算,Hadoop在处理海量数据时,性能横向扩展变得非常容易。
      • HBase是对Google 的Bigtable 的开源实现,但又和Bigtable 存在许多不同之处。
        HBase 是一个基于HDFS的分布式数据库,擅长实时地随机读/写超大规模数据集。
        它也是Hadoop非常重要的组件。
    • Spark
      • Spark是一种由Scala语言开发的快速、通用、可扩展的大数据分析引擎
      • Spark Core 中提供了Spark最基础与最核心的功能
      • Spark SQL是Spark用来操作结构化数据的组件。通过Spark SQL,用户可以使用
        SQL 或者Apache Hive 版本的SQL方言(HQL)来查询数据。
      • Spark Streaming 是 Spark 平台上针对实时数据进行流式计算的组件,提供了丰富的
        处理数据流的API。

Spark and Hadoop

  • Hadoop MapReduce 由于其设计初衷并不是为了满足循环迭代式数据流处理,因此在多
    并行运行的数据可复用场景(如:机器学习、图挖掘算法、交互式数据挖掘算法)中存
    在诸多计算效率等问题。所以Spark应运而生,Spark就是在传统的MapReduce 计算框
    架的基础上,利用其计算过程的优化,从而大大加快了数据分析、挖掘的运行和读写速
    度,并将计算单元缩小到更适合并行计算和重复使用的RDD计算模型。
  • 机器学习中 ALS、凸优化梯度下降等。这些都需要基于数据集或者数据集的衍生数据
    反复查询反复操作。MR这种模式不太合适,即使多MR串行处理,性能和时间也是一
    个问题。数据的共享依赖于磁盘。另外一种是交互式数据挖掘,MR 显然不擅长。而
    Spark 所基于的scala语言恰恰擅长函数的处理。
  • Spark 是一个分布式数据快速分析项目。它的核心技术是弹性分布式数据集(Resilient
    Distributed Datasets),提供了比 MapReduce 丰富的模型,可以快速在内存中对数据集
    进行多次迭代,来支持复杂的数据挖掘算法和图形计算算法。
  • Spark和Hadoop的根本差异是多个作业之间的数据通信问题 : Spark多个作业之间数据
    通信是基于内存,而Hadoop是基于磁盘。
  • Spark Task 的启动时间快。Spark采用fork线程的方式,而Hadoop采用创建新的进程
    的方式。
  • Spark只有在shuffle的时候将数据写入磁盘,而Hadoop中多个MR作业之间的数据交
    互都要依赖于磁盘交互
  • Spark的缓存机制比HDFS的缓存机制高效。

Spark 核心模块

在这里插入图片描述

  • Spark Core
    Spark Core 中提供了 Spark 最基础与最核心的功能,Spark其他的功能如:Spark SQL,Spark Streaming,GraphX, MLlib 都是在 Spark Core 的基础上进行扩展的
  • Spark SQL
    Spark SQL 是 Spark 用来操作结构化数据的组件。通过Spark SQL,用户可以使用SQL或者Apache Hive 版本的SQL方言(HQL)来查询数据。
  • Spark Streaming
    Spark Streaming 是 Spark 平台上针对实时数据进行流式计算的组件,提供了丰富的处理数据流的API。
  • Spark MLlib
    MLlib 是 Spark 提供的一个机器学习算法库。MLlib不仅提供了模型评估、数据导入等额外的功能,还提供了一些更底层的机器学习原语。
  • Spark GraphX
    GraphX 是Spark 面向图计算提供的框架与算法库。

Spark 简单上手

创建Maven项目

增加 Scala 插件

Spark 由 Scala 语言开发的,所以本课件接下来的开发所使用的语言也为Scala,咱们当前使用的Spark版本为3.0.0,默认采用的Scala编译版本为2.12,所以后续开发时。我们依然采用这个版本。开发前请保证IDEA开发工具中含有Scala开发插件(在Plugins中进行下载)

增加依赖关系

<dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.12</artifactId> <version>3.0.0</version> </dependency> 
</dependencies>

WordCount

创建一个WordCount

在该项目路径下创建一个datas包,创建word.txt文件

// 创建Spark运行配置对象 
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount") // 创建Spark上下文环境对象(连接对象) 
val sc : SparkContext = new SparkContext(sparkConf) // 读取文件数据 
val fileRDD: RDD[String] = sc.textFile("datas/word.txt") // 将文件中的数据进行分词 
val wordRDD: RDD[String] = fileRDD.flatMap( _.split(" ") ) // 转换数据结构 word => (word, 1) 
val word2OneRDD: RDD[(String, Int)] = wordRDD.map((_,1)) // 将转换结构后的数据按照相同的单词进行分组聚合 
val word2CountRDD: RDD[(String, Int)] = word2OneRDD.reduceByKey(_+_) // 将数据聚合结果采集到内存中 
val word2Count: Array[(String, Int)] = word2CountRDD.collect() // 打印结果 
word2Count.foreach(println) //关闭Spark连接 
sc.stop() 

执行过程中,会产生大量的执行日志,如果为了能够更好的查看程序的执行结果,可以在项
目的resources目录中创建log4j.properties文件,并添加日志配置信息:

log4j.rootCategory=ERROR, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n 
# Set the default spark-shell log level to ERROR. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=ERROR
# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=ERROR
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=ERROR
log4j.logger.org.apache.parquet=ERROR log4j.logger.parquet=ERROR
# SPARK-9183: Settings to avoid annoying messages when looking up nonexistentUDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR

异常处理

如果本机操作系统是Windows,在程序中使用了Hadoop相关的东西,比如写入文件到
HDFS,则会遇到如下异常:

Failed to locate the winutils binary in the hadoop binary path

在资料找到WindowsDep查找对应的hadoop版本

在IDEA中配置Run Configuration,添加HADOOP_HOME变量
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/284900.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

对话Midjourney创始人:图片仅是起步,人工智能将全面改变学习、创意和组织。

ChatGPT狂飙160天&#xff0c;世界已经不是之前的样子。 新建了人工智能中文站https://ai.weoknow.com 每天给大家更新可用的国内可用chatGPT资源 ​ 发布在https://it.weoknow.com 关注我 Midjourney 是一家神奇的公司&#xff0c;11 人改变世界&#xff0c;创造伟大的产品。…

小车倒立摆系统极点配置,LQR闭环控制

在之前直流电机控制仿真里有讲过状态控制的基本架构&#xff0c;有兴趣的同学可以再回去看看&#xff0c;链接如下好玩的直流电机调速实验、PID、极点配置、LQR、观测器&#xff1b;不讲大道理_lqr控制器观测器-CSDN博客 在专栏的前三篇文章 小车倒立摆物理建模与simulink仿真…

MySQL字符集与排序规则

MySQL字符集与排序规则 字符集 字符集是一组符号和编码&#xff0c; 排序规则是用于比较字符集中字符的一组规则。 可使用information_schema character_sets表或show character_set语句查看可用的字符集。 Unicode、ACCII和UTF-8的区别 Unicode 是一种字符集&#xff0c;它…

探索超净实验室:高纯电子级PFA洗瓶特氟龙材质清洗瓶的特性

PFA洗瓶&#xff0c;实验中常用的清洗工具之一&#xff0c;是一个带有弯曲管状喷嘴的柔性瓶子&#xff0c;因此可以用手挤压瓶身以产生压力&#xff0c;迫使瓶内液体通过塑料管以单滴或窄流的形式流到需要清洁的表面。 ​ 由于需要多次挤压&#xff0c;瓶体要有良好的回弹性和…

【Unity】宏定义Scripting Define Symbols

1.宏的用处 我们在使用Unity开发的时候&#xff0c;经常需要根据不同环境执行不同的代码 比如安卓手机和苹果手机获取路径代码 这个时候&#xff0c;宏就派上用场了。 代码示例&#xff1a; //获取路径public string GtePath(){//不同平台&#xff0c;取不同的存储路径string…

软考 网络工程师 每日学习打卡 2024/3/21

学习内容 第8章 网络安全 本章主要讲解网络安全方面的基础知识和应用技术。针对考试应该掌握诸如数据加密、报文认 证、数字签名等基本理论&#xff0c;在此基础上深入理解网络安全协议的工作原理&#xff0c;并能够针对具体的 网络系统设计和实现简单的安全解决方案。 本章共有…

P - Beat

题目分析 1.看数据范围&#xff0c;大概知道dfs能做 2.自0问题开始查找&#xff0c;确保之后每次查找到的问题的困难度均大于上一次 3.遍历所有情况再记录cnt即可 代码 #include <iostream> #include <algorithm> #include <cstdio> #include <cstring&…

最好用的软件安装教程合集(Matlab\ Anaconda\Pytorch..)

MATLAB R2022b 安装教程 http://t.csdnimg.cn/dQ0Qwhttp://t.csdnimg.cn/dQ0Qw Anaconda安装教程 https://blog.csdn.net/fan18317517352/article/details/123035625https://blog.csdn.net/fan18317517352/article/details/123035625 Pytorch安装教程 https://blog.csdn.net…

pycorrector检测OCR错字实践

参考&#xff1a;https://github.com/shibing624/pycorrector/tree/master/examples/macbert stopwords.txt 添加专业停用词&#xff0c;避免错误 设置自定义词典&#xff0c;避免将正确的词错误检测成错误的词 from pycorrector import Corrector m Corrector() m.set_cus…

Naive UI:一个 Vue 3 组件库,比较完整,主题可调,使用 TypeScript,快有点意思。

在当今的前端开发领域&#xff0c;Vue 3已成为中后台应用的首选框架。为了满足开发者的需求&#xff0c;各种组件库如雨后春笋般涌现。其中&#xff0c;Naive UI以其独特的优势&#xff0c;成为了Vue 3开发者的得力助手。本文将深入探讨Naive UI的特性、优势以及如何使用它来提…

面试算法-78-两两交换链表中的节点

题目 给你一个链表&#xff0c;两两交换其中相邻的节点&#xff0c;并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题&#xff08;即&#xff0c;只能进行节点交换&#xff09;。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4] 输出&#xff…

【spring】@Lazy注解学习

Lazy介绍 Lazy 注解是一个配置注解&#xff0c;用于指示 Spring 容器在创建 bean 时采用延迟初始化的策略。这意味着&#xff0c;除非 bean 被实际使用&#xff0c;否则不会被创建和初始化。 在 Spring 框架中&#xff0c;默认情况下&#xff0c;所有的单例 bean 在容器启动时…

GAMES101 作业0

1.向量点积 dot(a, b) a1 * b1 a2 * b2 ... an * bn根据sample&#xff0c;我们可以通过dot进行向量点积 2.矩阵运算 3.给定一个点 P(2,1), 将该点绕原点先逆时针旋转 45◦&#xff0c;再平移 (1,2), 计算出变换后点的坐标&#xff08;要求用齐次坐标进行计算&#xff09;…

11.创建后台系统项目

后台系统项目 兼容性 vite官网&#xff1a;https://vitejs.dev/ vite中文网&#xff1a;https://cn.vitejs.dev/ vite需要node.js版本 >14.0.0&#xff0c;建议16 node -v 查看版本号 创建项目 进入存放目录 执行命令 npm create vitelatest 选择vue框架 选择typescript…

SpringBoot自动装配原理

SpringBootApplication相当于 SpringBootConfiguration EnableAutoConfiguration ComponentScan ●EnableAutoConfiguration&#xff1a;启用 SpringBoot 的自动配置机制 ●ComponentScan&#xff1a; 扫描被Component (Service,Controller)注解的 bean&#xff0c;注解默认…

CTF-辨别细菌

题目描述&#xff1a;try your best to find the flag. 进入靶场后发现是一个游戏&#xff0c;需要全部答对才可以得到最后的flag 查看了一下源码&#xff0c;发现有一个答案模板的模块 尝试解释一下代码 <!-- 答案模版 --> <script id"template_game_pi…

mysql迁移达梦数据库 Java踩坑合集

达梦数据库踩坑合集 文章目录 安装达梦设置大小写不敏感Spring boot引入达梦驱动&#xff08;两种方式&#xff09;将jar包打入本地maven仓库使用国内maven仓库&#xff08;阿里云镜像&#xff09; 达梦驱动yml配置springboot mybatis-plus整合达梦,如何避免指定数据库名&…

【算法篇】逐步理解动态规划1(斐波那契数列模型)

目录 斐波那契数列模型 1. 第N个泰波那契数 2.使用最小花费爬楼梯 3.解码方法 学过算法的应该知道&#xff0c;动态规划一直都是一个非常难的模块&#xff0c;无论是状态转移方程的定义还是dp表的填表&#xff0c;都非常难找到思路。在这个算法的支线专题中我会结合很多力…

Java设计模式之单例模式(多种实现方式)

虽然写了很多年代码&#xff0c;但是说真的对设计模式不是很熟练&#xff0c;虽然平时也会用到一些&#xff0c;但是都没有深入研究过&#xff0c;所以趁现在有空练下手 这章主要讲单例模式&#xff0c;也是最简单的一种模式&#xff0c;但是因为spring中bean的广泛应用&#…

后端工程师快速使用vue和Element

文章目录 Vue1 Vue概述2 快速入门3 Vue指令3.1 v-bind和v-model3.2 v-on3.3 v-if和v-show3.4 v-for3.5 案例 4 生命周期 Element快速使用1 Element介绍2 快速入门3 当前页面中嵌套另一个页面案例代码案例截图 Vue 1 Vue概述 通过我们学习的htmlcssjs已经能够开发美观的页面了…