【Linux】写个日志和再谈线程池

在这里插入图片描述

欢迎来到Cefler的博客😁
🕌博客主页:折纸花满衣
🏠个人专栏:信号量和线程池

在这里插入图片描述


目录

  • 👉🏻日志代码
    • Log.cpp
    • Main.cc
  • 👉🏻线程池代码
    • LockGuard.hpp(自定义互斥锁,进行加锁和解锁)
    • Thread.hpp
    • Task.hpp(安排线程任务)
    • ThreadPool.hpp
  • 👉🏻读写锁和自旋锁
    • c++读写锁实现伪代码
    • c++自旋锁实现伪代码

👉🏻日志代码

Log.cpp

#define _CRT_SECURE_NO_WARNINGS 1
#pragma once#include <iostream>
#include <fstream>
#include <string>
#include <cstdarg>
#include <ctime>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>using namespace std;
enum
{Debug = 0,Info,Warning,Error,Fatal
};enum
{Screen = 10,//向显示器OneFile,ClassFile
};std::string LevelToString(int level)
{switch (level){case Debug:return "Debug";case Info:return "Info";case Warning:return "Warning";case Error:return "Error";case Fatal:return "Fatal";default:return "Unknown";}
}const int defaultstyle = Screen;
const std::string default_filename = "log.";
const std::string logdir = "log";class Log
{
public:Log() : style(defaultstyle), filename(default_filename){mkdir(logdir.c_str(), 0775);}void Enable(int sty) //{style = sty;}std::string TimeStampExLocalTime(){time_t currtime = time(nullptr);struct tm* curr = localtime(&currtime);char time_buffer[128];snprintf(time_buffer, sizeof(time_buffer), "%d-%d-%d %d:%d:%d",curr->tm_year + 1900, curr->tm_mon + 1, curr->tm_mday,curr->tm_hour, curr->tm_min, curr->tm_sec);return time_buffer;}void WriteLogToOneFile(const std::string& logname, const std::string& message){umask(0);int fd = open(logname.c_str(), O_CREAT | O_WRONLY | O_APPEND, 0666);if (fd < 0) return;write(fd, message.c_str(), message.size());close(fd);// std::ofstream out(logname);// if (!out.is_open())//     return;// out.write(message.c_str(), message.size());// out.close();}void WriteLogToClassFile(const std::string& levelstr, const std::string& message){std::string logname = logdir;logname += "/";logname += filename;logname += levelstr;WriteLogToOneFile(logname, message);}void WriteLog(const std::string& levelstr, const std::string& message){switch (style){case Screen:std::cout << message;break;case OneFile:WriteLogToClassFile("all", message);break;case ClassFile:WriteLogToClassFile(levelstr, message);break;default:break;}}void LogMessage(int level, const char* format, ...) // 类C的一个日志接口{char leftbuffer[1024];std::string levelstr = LevelToString(level);std::string currtime = TimeStampExLocalTime();std::string idstr = std::to_string(getpid());char rightbuffer[1024];va_list args; // char *, void *va_start(args, format);// args 指向了可变参数部分vsnprintf(rightbuffer, sizeof(rightbuffer), format, args);va_end(args); // args = nullptr;snprintf(leftbuffer, sizeof(leftbuffer), "[%s][%s][%s] ",levelstr.c_str(), currtime.c_str(), idstr.c_str());std::string loginfo = leftbuffer;loginfo += rightbuffer;WriteLog(levelstr, loginfo);}// void operator()(int level, const char *format, ...)// {//     LogMessage(int level, const char *format, ...)// }~Log() {}private:int style;std::string filename;
};Log lg;class Conf
{
public:Conf(){lg.Enable(Screen);}~Conf(){}
};Conf conf;

Main.cc

#include <iostream>
#include "Log.hpp"int main()
{Log lg;lg.Enable(OneFile);lg.LogMessage(Debug, "this is a log message: %d, %lf\n", 123, 3.14);lg.LogMessage(Info, "this is a log message: %d, %lf\n", 123, 3.14);lg.LogMessage(Warning, "this is a log message: %d, %lf\n", 123, 3.14);lg.LogMessage(Error, "this is a log message: %d, %lf\n", 123, 3.14);lg.LogMessage(Fatal, "this is a log message: %d, %lf\n", 123, 3.14);lg.LogMessage(Debug, "this is a log message: %d, %lf\n", 123, 3.14);lg.LogMessage(Info, "this is a log message: %d, %lf\n", 123, 3.14);lg.LogMessage(Warning, "this is a log message: %d, %lf\n", 123, 3.14);lg.LogMessage(Error, "this is a log message: %d, %lf\n", 123, 3.14);lg.LogMessage(Fatal, "this is a log message: %d, %lf\n", 123, 3.14);lg.LogMessage(Debug, "this is a log message: %d, %lf\n", 123, 3.14);lg.LogMessage(Info, "this is a log message: %d, %lf\n", 123, 3.14);lg.LogMessage(Warning, "this is a log message: %d, %lf\n", 123, 3.14);lg.LogMessage(Error, "this is a log message: %d, %lf\n", 123, 3.14);lg.LogMessage(Fatal, "this is a log message: %d, %lf\n", 123, 3.14);return 0;
}

上述我们是将内容写进一个文件夹里lg.Enable(OneFile);
我们看结果:
在这里插入图片描述

👉🏻线程池代码

LockGuard.hpp(自定义互斥锁,进行加锁和解锁)

#pragma once#include <pthread.h>// 不定义锁,默认认为外部会给我们传入锁对象
class Mutex
{
public:Mutex(pthread_mutex_t *lock):_lock(lock){}void Lock(){pthread_mutex_lock(_lock);}void Unlock(){pthread_mutex_unlock(_lock);}~Mutex(){}private:pthread_mutex_t *_lock;
};class LockGuard
{
public:LockGuard(pthread_mutex_t *lock): _mutex(lock){_mutex.Lock();}~LockGuard(){_mutex.Unlock();}
private:Mutex _mutex;
};

Thread.hpp

#pragma once#include <iostream>
#include <string>
#include <functional>
#include <pthread.h>// 设计方的视角
//typedef std::function<void()> func_t;
template<class T>
using func_t = std::function<void(T&)>;template<class T>
class Thread
{
public:Thread(const std::string &threadname, func_t<T> func, T &data):_tid(0), _threadname(threadname), _isrunning(false), _func(func), _data(data){}static void *ThreadRoutine(void *args) // 类内方法,{// (void)args; // 仅仅是为了防止编译器有告警Thread *ts = static_cast<Thread *>(args);ts->_func(ts->_data);return nullptr;}bool Start(){int n = pthread_create(&_tid, nullptr, ThreadRoutine, this/*?*/);if(n == 0) {_isrunning = true;return true;}else return false;}bool Join(){if(!_isrunning) return true;int n = pthread_join(_tid, nullptr);if(n == 0){_isrunning = false;return true;}return false;}std::string ThreadName(){return _threadname;}bool IsRunning(){return _isrunning;}~Thread(){}
private:pthread_t _tid;std::string _threadname;bool _isrunning;func_t<T> _func;T _data;
};

Task.hpp(安排线程任务)

#pragma once
#include <iostream>
#include <string>
#include <unistd.h>const int defaultvalue = 0;enum
{ok = 0,div_zero,mod_zero,unknow
};const std::string opers = "+-*/%";class Task
{
public:Task(){}Task(int x, int y, char op): data_x(x), data_y(y), oper(op), result(defaultvalue), code(ok){}void Run(){switch (oper){case '+':result = data_x + data_y;break;case '-':result = data_x - data_y;break;case '*':result = data_x * data_y;break;case '/':{if (data_y == 0)code = div_zero;elseresult = data_x / data_y;}break;case '%':{if (data_y == 0)code = mod_zero;elseresult = data_x % data_y;}break;default:code = unknow;break;}}void operator()(){Run();}std::string PrintTask(){std::string s;s = std::to_string(data_x);s += oper;s += std::to_string(data_y);s += "=?";return s;}std::string PrintResult(){std::string s;s = std::to_string(data_x);s += oper;s += std::to_string(data_y);s += "=";s += std::to_string(result);s += " [";s += std::to_string(code);s += "]";return s;}~Task(){}private:int data_x;int data_y;char oper; // + - * / %int result;int code; // 结果码,0: 结果可信 !0: 结果不可信,1,2,3,4
};

ThreadPool.hpp

#pragma once#include <iostream>
#include <queue>
#include <vector>
#include <pthread.h>
#include <functional>
#include "Log.hpp"
#include "Thread.hpp"
#include "LockGuard.hpp"static const int defaultnum = 5;class ThreadData
{
public:ThreadData(const std::string &name) : threadname(name){}~ThreadData(){}public:std::string threadname;
};template <class T>
class ThreadPool
{
private:ThreadPool(int thread_num = defaultnum) : _thread_num(thread_num){pthread_mutex_init(&_mutex, nullptr);//互斥锁初始化pthread_cond_init(&_cond, nullptr);//条件变量初始化// 构建指定个数的线程for (int i = 0; i < _thread_num; i++){// 待优化std::string threadname = "thread-";threadname += std::to_string(i + 1);ThreadData td(threadname);// Thread<ThreadData> t(threadname,//                      std::bind(&ThreadPool<T>::ThreadRun, this, std::placeholders::_1), td);// _threads.push_back(t);_threads.emplace_back(threadname,std::bind(&ThreadPool<T>::ThreadRun, this,std::placeholders::_1),td);//emplace_back函数直接在容器的末尾就地构造一个新的元素(直接构造),而不是先创建一个临时对象lg.LogMessage(Info, "%s is created...\n", threadname.c_str());//打印日志}}ThreadPool(const ThreadPool<T> &tp) = delete;const ThreadPool<T> &operator=(const ThreadPool<T>) = delete;public:// 有线程安全问题的(单例模式-懒汉模式):在懒汉模式下,单例实例在第一次使用时才被创建//线程不安全是因为会有多个线程进行创建实例static ThreadPool<T> *GetInstance(){if (instance == nullptr){LockGuard lockguard(&sig_lock);//为了规避线程不安全情况,要进行加锁操作if (instance == nullptr){lg.LogMessage(Info, "创建单例成功...\n");instance = new ThreadPool<T>();}}return instance;}bool Start(){// 启动for (auto &thread : _threads){thread.Start();lg.LogMessage(Info, "%s is running ...\n", thread.ThreadName().c_str());}return true;}void ThreadWait(const ThreadData &td)//线程等待{lg.LogMessage(Debug, "no task, %s is sleeping...\n", td.threadname.c_str());pthread_cond_wait(&_cond, &_mutex);}void ThreadWakeup()//唤醒线程{pthread_cond_signal(&_cond);}void checkSelf(){// 1. _task_num > _task_num_high_water && _thread_num < _thread_num_high_water// 创建更多的线程,并且更新_thread_num// 2. _task_num == _task_num_low_water && _thread_num >= _thread_num_high_water// 把自己退出了,并且更新_thread_num}void ThreadRun(ThreadData &td)//线程执行{while (true){// checkSelf()checkSelf();// 取任务T t;{LockGuard lockguard(&_mutex);while (_q.empty()){ThreadWait(td);//执行队列如果为空,则让当前线程进行等待lg.LogMessage(Debug, "thread %s is wakeup\n", td.threadname.c_str());//若执行到这一步,说明线程以及被唤醒}t = _q.front();_q.pop();}// 处理任务t();lg.LogMessage(Debug, "%s handler task %s done, result is : %s\n",td.threadname, t.PrintTask().c_str(), t.PrintResult().c_str());}}void Push(T &in){lg.LogMessage(Debug, "other thread push a task, task is : %s\n", in.PrintTask().c_str());LockGuard lockguard(&_mutex);_q.push(in);ThreadWakeup();}~ThreadPool(){pthread_mutex_destroy(&_mutex);pthread_cond_destroy(&_cond);}// for debugvoid Wait(){for (auto &thread : _threads){thread.Join();}}private:std::queue<T> _q;std::vector<Thread<ThreadData>> _threads;int _thread_num;pthread_mutex_t _mutex;pthread_cond_t _cond;static ThreadPool<T> *instance;static pthread_mutex_t sig_lock;// 扩展1:// int _thread_num;// int _task_num;// int _thread_num_low_water;  // 3// int _thread_num_high_water; // 10// int _task_num_low_water;    // 0// int _task_num_high_water;   // 30// 扩展2: 多进程+多线程// int number{1};
};template <class T>
ThreadPool<T> *ThreadPool<T>::instance = nullptr;
template <class T>
pthread_mutex_t ThreadPool<T>::sig_lock = PTHREAD_MUTEX_INITIALIZER;

👉🏻读写锁和自旋锁

当多个线程尝试同时访问共享资源时,为了保证数据的一致性,需要使用锁来实现同步。读加锁和自旋锁都是常见的锁机制,用于控制对共享资源的访问。

  1. 读加锁(Read Lock):

    • 读加锁允许多个线程同时对共享资源进行读取操作,但不允许写操作。
    • 当一个线程获取了读锁后,其他线程可以继续获取读锁,但不能获取写锁,直到所有的读锁都被释放。
    • 读锁之间不会互斥,可以同时存在多个读锁
    • 读锁适用于读操作频繁,写操作较少的场景,可以提高并发读取效率。
  2. 自旋锁(Spin Lock):

    • 自旋锁是一种忙等待的锁机制,当一个线程尝试获取锁时,如果锁已经被其他线程占用,该线程会循环检测锁是否被释放,而不是进入睡眠状态
    • 自旋锁适用于对共享资源的访问时间非常短的情况,避免了线程频繁切换和上下文切换的开销
    • 自旋锁在多核处理器上效果更好,因为在等待锁的过程中可以利用处理器时间进行自旋操作,提高效率。

总的来说,读加锁适合读操作频繁的场景,而自旋锁适合对共享资源访问时间短、线程并发量不高的场景。选择合适的锁机制可以提高程序的并发性能和效率。

c++读写锁实现伪代码

读写锁(Read-Write Lock)是一种多线程同步机制,允许多个线程同时对共享资源进行读取操作,但在进行写操作时需要互斥排他。它的设计目的是在读操作频繁、写操作较少的场景下提高并发性能。

读写锁通常包括两种状态:读模式和写模式。

  • 读模式:多个线程可以同时获取读锁,以便并发地读取共享资源。
  • 写模式:当一个线程获取写锁时,其他线程无法同时获取读锁或写锁,确保写操作的互斥性。

与互斥锁不同,读写锁允许多个线程同时持有读锁,这样可以提高并发性能。只有当有线程持有写锁时,其他线程才不能获取读锁或写锁。

读写锁的使用场景通常是在数据的读操作远远多于写操作的情况下,通过允许并发读取来提高性能。然而,如果写操作频繁,读写锁可能会失去优势,因为写操作会阻塞所有的读操作。

在C++中,可以使用 std::shared_mutex 来实现读写锁的功能,通过 lock_shared() 获取读锁,通过 lock() 获取写锁,实现对共享资源的安全访问。

#include <iostream>
#include <thread>
#include <mutex>std::mutex mtx;
int sharedData = 0;void writer() {mtx.lock(); // 加锁sharedData++; // 写操作std::cout << "Writer updated data to: " << sharedData << std::endl;mtx.unlock(); // 解锁
}int main() {std::thread writerThread1(writer);std::thread writerThread2(writer);writerThread1.join();writerThread2.join();return 0;
}

c++自旋锁实现伪代码

C++11 提供的原子操作来实现自旋锁

#include <atomic>class SpinLock {
public:void lock() {while (locked.test_and_set(std::memory_order_acquire)) {// 自旋等待锁释放}}void unlock() {locked.clear(std::memory_order_release);}private:std::atomic_flag locked = ATOMIC_FLAG_INIT;
};

如上便是本期的所有内容了,如果喜欢并觉得有帮助的话,希望可以博个点赞+收藏+关注🌹🌹🌹❤️ 🧡 💛,学海无涯苦作舟,愿与君一起共勉成长

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/285211.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java获取方法参数名称方案||SpringBoot配置顺序注解

一: Java获取方法参数名称的方法 普盲: getDeclaredMethods与getMethods的的区别 1、getMethods返回一个包含某些 Method 对象的数组&#xff0c;这些对象反映此 Class 对象所表示的类或接口的公共 member 方法。 2、getDeclaredMethods返回 Method 对象的一个数组&#xff0c…

python绘图matplotlib——使用记录2

本博文来自于网络收集&#xff0c;如有侵权请联系删除 三维图绘制 1 三维散点图2 三维柱状图三维曲面 1 三维散点图 import matplotlib.pyplot as plt import numpy as npfrom mpl_toolkits.mplot3d import Axes3Dfig plt.figure() # ax fig.gca(projection"3d")…

Docker(二):Docker常用命令

docker 查看docker支持的所有命令和参数。 ➜ ~ docker Management Commands:config Manage Docker configscontainer Manage containersimage Manage imagesnetwork Manage networksnode Manage Swarm nodesplugin Manage pluginssecret …

操作系统究竟是什么?在计算机体系中扮演什么角色?

操作系统究竟是什么&#xff1f;在计算机体系中扮演什么角色&#xff1f; 一、操作系统概念二、操作系统如何管理软硬件资源2.1 何为管理者2.2 操作系统如何管理硬件 三、系统调用接口作用四、用户操作接口五、广义操作系统和狭义操作系统 一、操作系统概念 下面是来自百度百科…

51单片机学习笔记——LED闪烁和流水灯

任务分析 首先要知道LED闪烁主要是怎么工作的&#xff0c;闪烁亮灭自然是一下为高一下为低&#xff0c;亮灭的频率则需要延时来进行控制。 上节已经知道了如何点亮那延时如何做呢首先先编写主框架 这样是否可以通过循环将LED灯一直循环闪烁。 以为while一直在循环所以其实是可…

【评分标准】【网络系统管理】2019年全国职业技能大赛高职组计算机网络应用赛项H卷 无线网络勘测设计

第一部分&#xff1a;无线网络勘测设计评分标准 序号评分项评分细项评分点说明评分方式分值1点位设计图AP编号AP编号符合“AP型号位置编号”完全匹配5AP型号独立办公室、小型会议室选用WALL AP110完全匹配5员工寝室选用智分&#xff0c;其他用放装完全匹配5其它区域选用放装AP…

设计模式(十二):中介者模式(行为型模式)

Mediator&#xff0c;中介者模式&#xff1a;用一个中介对象封装一些列的对象交互。属于行为型模式 Facade&#xff0c;外观模式&#xff1a;为子系统中的一组接口提供一致的界面&#xff0c;facade 提供了一高层接口&#xff0c;这个接口使得子系统更容易使用。属于结构型模式…

Linux升级GCC

文章目录 一、安装 EPEL 仓库二、更新yum三、安装 CentOS 开发工具组四、安装scl五、安装gcc 11六、启用gcc 11七、设置永久使用 一、安装 EPEL 仓库 命令&#xff1a; yum install epel-release -y二、更新yum 命令&#xff1a; yum update -y三、安装 CentOS 开发工具组 …

opencv各个模块介绍(2)

Features2D 模块&#xff1a;特征检测和描述子计算模块&#xff0c;包括SIFT、SURF等算法。 Features2D 模块提供了许多用于特征检测和描述子匹配的函数和类&#xff0c;这些函数和类可用于图像特征的提取、匹配和跟踪。 FeatureDetector&#xff1a;特征检测器的基类&#xf…

[BT]BUUCTF刷题第6天(3.24)

第6天 Web [极客大挑战 2019]PHP Payload&#xff1a; O:4:"Name":3:{s:14:"%00Name%00username";s:5:"admin";s:14:"%00Name%00password";s:3:"100";}这道题考点是网站源码备份文件泄露和PHP反序列化&#xff0c;有篇介…

t-rex2开放集目标检测

论文链接&#xff1a;http://arxiv.org/abs/2403.14610v1 项目链接&#xff1a;https://github.com/IDEA-Research/T-Rex 这篇文章的工作是基于t-rex1的工作继续做的&#xff0c;核心亮点&#xff1a; 是支持图片/文本两种模态的prompt进行输入&#xff0c;甚至进一步利用两…

013_Linux(上传rz,下载sz,tar,zip,unzip)

目录 一、上传、下载 1、通过鼠标操作 &#xff08;1&#xff09;下载 &#xff08;2&#xff09;上传 2、通过命令操作 rz、sz &#xff08;1&#xff09;下载 sz &#xff08;2&#xff09;上传 rz 二、压缩、解压 1、tar命令 &#xff08;1&#xff09;压缩 &…

使用amd架构的计算机部署其他架构的虚拟机(如:arm)

1 下载quem模拟器 https://qemu.weilnetz.de/w64/2 QEMU UEFI固件文件下载(引导文件) 推荐使用&#xff1a;https://releases.linaro.org/components/kernel/uefi-linaro/latest/release/qemu64/QEMU_EFI.fd3 QEMU 安装 安装完成之后&#xff0c;需要将安装目录添加到环境变…

vscode的一些技巧

技巧1&#xff1a;调试时传参数 在launch.json的configuration中"pwd"或者"program"选项之后添加如下选项&#xff1a; “--args”:["参数1", "参数2", ..., "参数3] 参数之间使用逗号隔开 技巧2&#xff1a;断点 普通断点使…

通过dbeaver链接dm8数据库

一、环境说明 windows 11 vmware 17 ubuntu 22 tt:~$ lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 22.04.3 LTS Release: 22.04 Codename: jammytt:~$ docker info Client:Version: 24.0.5Context: d…

Python 全栈系列236 rabbit_agent搭建

说明 通过rabbit_agent, 以接口方式实现对队列的标准操作&#xff0c;将pika包在微服务内&#xff0c;而不必在太多地方重复的去写。至少在服务端发布消息时&#xff0c;不必再去考虑这些问题。 在分布式任务的情况下&#xff0c;客户端本身会启动一个持续监听队列的客户端服…

Java研学-SpringBoot(二)

二 Spring Boot 介绍 1 简介 Spring Boot是由Pivotal团队提供的全新框架&#xff0c;主要目标是简化Spring应用程序的配置和部署过程&#xff0c;减少开发者在项目搭建和配置上的工作量&#xff0c;让开发者能够更专注于业务逻辑的实现。它使用特定的方式来进行配置&#xff0…

Request请求参数----中文乱码问题

一: GET POST获取请求参数: 在处理为什么会出现中文乱码的情况之前, 首先我们要直到GET 以及 POST两种获取请求参数的不同 1>POST POST获取请求参数是通过输入流getReader来进行获取的, 通过字符输入流来获取响应的请求参数, 并且在解码的时候, 默认的情况是 ISO_885…

基于SpringBoot+Vue+Mybatis的408刷题小程序管理端

简介 原始数据&#xff1a;书目信息、章节信息、题目信息、系统菜单、系统角色、系统用户。 主要任务&#xff1a;系统主要采用spring boot作为后端框架&#xff0c;前端使用vueelementUI&#xff0c;为408刷题小程序提供一个方面的管理和维护的任务&#xff0c;主要功能包括…

图解Kafka架构学习笔记(三)

准备Kafka环境 这里推荐使用Docker Compose快速搭建一套本地开发环境。 以下docker-compose.yml文件用来搭建一套单节点zookeeper和单节点kafka环境&#xff0c;并且在8080端口提供kafka-ui管理界面。 version: 2.1services:zoo1:image: confluentinc/cp-zookeeper:7.3.2hos…