SCI一区 | Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

目录

    • SCI一区 | Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.基于SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

模型描述

麻雀算法(Sparrow Search Algorithm)是一种基于麻雀觅食行为的启发式优化算法,用于解决优化问题。它模拟了麻雀觅食的过程,通过搜索和调整候选解来逐步优化目标函数的值。

SSA-TCN-BiGRU-Attention是一个复合模型,用于多变量时间序列预测。让我逐步解释每个部分的含义:

SSA(Sparrow Search Algorithm):这是优化算法的部分,用于调整模型的参数以获得更好的预测性能。

TCN(Temporal Convolutional Network):这是一种基于卷积神经网络的模型,用于处理时间序列数据。TCN使用一系列不同大小的卷积核对时间序列数据进行卷积操作,以捕捉不同时间尺度上的特征。

BiGRU(Bidirectional Gated Recurrent Unit):这是一种双向门控循环单元模型,用于学习时间序列数据中的时序依赖关系。BiGRU能够同时考虑过去和未来的信息,以更好地建模序列数据的动态性。

Attention(注意力机制):这是一种机制,用于在模型的不同部分自动地分配注意力权重。在多变量时间序列预测中,注意力机制可以帮助模型自动选择对预测目标最重要的输入变量。

综合以上四个部分,SSA-TCN-BiGRU-Attention模型结合了优化算法、时间卷积、双向门控循环单元和注意力机制,旨在提高多变量时间序列预测的准确性和性能。通过使用麻雀算法进行参数优化,结合卷积、循环和注意力机制的特性,该模型能够更好地捕捉时间序列数据中的时序依赖关系和重要特征,从而实现更准确的预测。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现SSA-TCN-BiGRU-Attention麻雀算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

%% 麻雀算法优化TCN-BiGRU-Attention,实现多变量输入单步预测clc;
clear 
close allX = xlsread('data.xlsx');
num_samples = length(X);                            % 样本个数 
kim = 6;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
or_dim = size(X,2);%  重构数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.9;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%  格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
end%% 优化算法优化前,构建优化前的TCN_BiGRU_Attention模型outputSize = 1;  %数据输出y的维度  
numFilters = 64;
filterSize = 5;
dropoutFactor = 0.1;
numBlocks = 2;layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);     convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")layerNormalizationLayerreluLayerdropoutLayer(dropoutFactor) additionLayer(2,Name="add_"+i)];% Add and connect layers.lgraph = addLayers(lgraph,layers);lgraph = connectLayers(lgraph,outputName,"conv1_"+i);% Skip connection.if i == 1% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
endtempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);tempLayers = gruLayer(NumNeurons,"Name","gru1");
lgraph = addLayers(lgraph,tempLayers);tempLayers = [FlipLayer("flip3")gruLayer(NumNeurons,"Name","gru2")];
lgraph = addLayers(lgraph,tempLayers);tempLayers = [concatenationLayer(1,2,"Name","concat")

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/285353.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HTML_CSS学习:表格、表单、框架标签

一、表格_跨行与跨列 1.相关代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>表格_跨行与跨列</title> </head> <body><table border"1" cellspacing"0&qu…

Linux: 线程安全

Linux 线程共享了进程的资源(地址空间, 页表等), 多个线程同时访问同一个资源就可能产生问题:数据竞争 临界资源: 多个线程共享的资源临界区: 访问临界资源的区域互斥: 任何时刻, 只有一个执行流能进入临界区同步: 以一定顺序访问临界资源原子性: 要么完成, 玩么未完成 锁 死…

2024.3 个人survey 医疗大模型关系梳理

大体上是这样&#xff0c;具体模型规格看他们的arxiv或者github吧。 仲景 https://github.com/pariskang/CMLM-ZhongJingDoctorGLM https://arxiv.org/abs/2304.01097 https://github.com/xionghonglin/DoctorGLM本草 https://arxiv.org/pdf/2304.06975.pdf https://github.co…

C++ - 类和对象(上)

目录 一、类的定义 二、访问限定符 public&#xff08;公有&#xff09; protected&#xff08;保护&#xff09; private&#xff08;私有&#xff09; 三、类声明和定义分离 四、外部变量和成员变量的区别与注意 五、类的实例化 六、类对象的模型 七、类的this指针…

好用的GPTs:指定主题搜索、爬虫、数据清洗、数据分析自动化

好用的GPTs&#xff1a;指定主题搜索、爬虫、数据清洗、数据分析自动化 Scholar&#xff1a;搜索 YOLO小目标医学方面最新论文Scraper&#xff1a;爬虫自动化数据清洗数据分析 点击 Explore GPTs&#xff1a; Scholar&#xff1a;搜索 YOLO小目标医学方面最新论文 搜索 Scho…

武汉星起航引领跨境电商新潮流,深耕平台助力创业者实现财富增长

在全球电商市场不断演进的时代背景下&#xff0c;跨境电商已经从一种新兴趋势演变成为商业领域的主流。亚马逊&#xff0c;作为全球电商巨头&#xff0c;更是以其庞大的用户基础和高效的运营体系&#xff0c;吸引着全球数以百万计的卖家纷纷入驻&#xff0c;共同探索这片充满商…

Set A Light 3D Studio中文--- 打造专业级3D照明效果

Set A Light 3D Studio是一款专业的灯光模拟软件&#xff0c;专为摄影师和电影制片人打造。它允许用户在计算机上模拟并预览各种布光效果&#xff0c;助力拍摄出真实、精准且具有艺术感的作品。软件提供了丰富的灯光和场景模型&#xff0c;用户可以灵活调整光源参数&#xff0c…

Django Ajax

【一】Json 【1】介绍 JSON&#xff08;javascript object otaition&#xff09;是一种轻量级的数据交换格式JSON使用了Javascript的一部分语法来定义其数据格式&#xff0c;但Json是独立于语言的Json采用完全独立于语言的文本格式&#xff0c;使得Json成为理想的数据交互语言…

ARIMA

一.数据平稳性与差分法 1.平稳性&#xff1a; 2.差分法&#xff1a; 错开时间点&#xff0c;使得数据可以平稳 原数据➡️一阶差分➡️二阶差分&#xff1a; 二、arima 1.自回归模型 2.移动平均模型 关注的是误差项的累积 3.arma p d(几阶差分&#xff09; q自己指定 4.总…

微信小程序button动态跳转到页面

微信小程序中如何动态的跳转到某个页面。 目录 1、首先在js文件中定义事件函数 2、在页面中进行传参调用 3、其它跳转方法简单说明 1、首先在js文件中定义事件函数 goto(e){const urle.currentTarget.dataset.url;wx.navigateTo({url: url})}, 2、在页面中进行传参调用 &l…

基于Java中的SSM框架实现考研指导平台系统项目【项目源码+论文说明】

基于Java中的SSM框架实现考研指导平台系统演示 摘要 应对考研的学生&#xff0c;为了更好的使校园考研有一个更好的环境好好的学习&#xff0c;建议一个好的校园网站&#xff0c;是非常有必要的。提供学生的学习提供一个交流的空间。帮助同学们在学习高数、学习设计、学习统计…

python usb与下位机 硬件通信

需求分析 上周接到一个需求 用usb和硬件连接 轮询读取usb中指定功能码的指定个数的数据并生成一个桌面程序 刚接到这个需求时 我第一时间想到的就是使用python去尝试 期间也踩了很多的坑 第一版效果如下 特此记录 环境搭建 首先第一点就是将所需要的库进行安装 这里是我这…

Qt——2D画图

基础画图函数 矩形 painter.drawRect(50,50,200,100); 圆角矩形 painter.drawRoundRect(50,50,200,200,50,50); xRadius和yRadius分别以矩形宽度和高度的一半的百分比指定&#xff0c;并且应该在0.0到100.0的范围内 弧线 painter.drawArc(50,50,200,200, -90*16, 90*16);…

探秘开源隐语:架构深度剖析与隐私计算技术之旅

1.隐语架构 隐语&#xff08;SecretFlow&#xff09;作为蚂蚁集团开源的可信隐私计算框架&#xff0c;其架构设计具有多层次的特点&#xff0c;虽然具体分层名称可能会根据实际描述略有差异&#xff0c;但我们可以依据已有的技术和信息对其进行结构化的拆解&#xff1a; 硬件层…

回归预测 | Matlab基于SAO-BiLSTM雪融算法优化双向长短期记忆神经网络的数据多输入单输出回归预测

回归预测 | Matlab基于SAO-BiLSTM雪融算法优化双向长短期记忆神经网络的数据多输入单输出回归预测 目录 回归预测 | Matlab基于SAO-BiLSTM雪融算法优化双向长短期记忆神经网络的数据多输入单输出回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于SAO-B…

MySQL学习笔记------SQL(1)

关系型数据库&#xff08;RDBMS&#xff09; 建立在关系模型基础上&#xff0c;由多张相互连接的二维表组成的数据库 特点&#xff1a;使用表储存数据&#xff0c;格式统一&#xff0c;便于维护 使用SQL语言操作&#xff0c;标准统一&#xff0c;使用方便 SQL通用语法 SQL…

反序列化漏洞简单知识

目录&#xff1a; 一、概念&#xff1a; 二、反序列化漏洞原因 三、序列化漏洞的魔术方法&#xff1a; 四、反序列化漏洞防御&#xff1a; 一、概念&#xff1a; 序列化&#xff1a; Web服务器将HttpSession对象保存到文件系统或数据库中&#xff0c;需要采用序列化的…

蓝桥杯day12刷题日记

P8720 [蓝桥杯 2020 省 B2] 平面切分 思路&#xff1a;首先借用dalao的图解释一下&#xff0c;又多出一条与当前平面任意一条直线都不重合线时&#xff0c;多了的平面是交点数1&#xff0c;所以用双层循环每次往里面加一条直线&#xff0c;计算交点 #include <iostream>…

STM32--RC522学习记录

一&#xff0c;datasheet阅读记录 1.关于通信格式 2.读寄存器 u8 RC522_ReadReg(u8 address) {u8 addr address;u8 data0x00;addr((addr<<1)&0x7e)|0x80;//将最高位置一表示read&#xff0c;最后一位按照手册建议变为0Spi_Start();//选中从机SPI2_ReadWriteByte(ad…

STM32之HAL开发——HAL库框架介绍

HAL库外设设计思想 HAL库借鉴面向对象的设计思想&#xff0c;将外设驱动封装为对象。 HAL库使用主线 HAL使用的主要用在俩个地方&#xff0c;无外乎外设初始化以及外设的使用。想用好这两个功能&#xff0c;我们首先得对外设的封装有一定的了解。 句柄结构体 xx_HandleTypeDef…