文章目录
- 其他经典例题跳转链接
- 26.约瑟夫问题(Josephus Problem)
- 27.排列组合
- 28.格雷码(Gray Code)
- 29.产生可能的集合
- 30.m元素集合的n个元素子集
其他经典例题跳转链接
C语言经典算法-1
1.汉若塔 2. 费式数列 3. 巴斯卡三角形 4. 三色棋 5. 老鼠走迷官(一)6. 老鼠走迷官(二)7. 骑士走棋盘8. 八皇后9. 八枚银币10. 生命游戏
C语言经典算法-2
字串核对、双色、三色河内塔、背包问题(Knapsack Problem)、蒙地卡罗法求 PI、Eratosthenes筛选求质数
C语言经典算法-3
超长整数运算(大数运算)、长 PI、最大公因数、最小公倍数、因式分解、完美数、阿姆斯壮数
C语言经典算法-4
最大访客数、中序式转后序式(前序式)、后序式的运算、洗扑克牌(乱数排列)、Craps赌博游戏
C语言经典算法-5
约瑟夫问题(Josephus Problem)、排列组合、格雷码(Gray Code)、产生可能的集合、m元素集合的n个元素子集
C语言经典算法-6
数字拆解、得分排行,选择、插入、气泡排序、Shell 排序法 - 改良的插入排序、Shaker 排序法 - 改良的气泡排序
C语言经典算法-7
排序法 - 改良的选择排序、快速排序法(一)、快速排序法(二)、快速排序法(三)、合并排序法
C语言经典算法-8
基数排序法、循序搜寻法(使用卫兵)、二分搜寻法(搜寻原则的代表)、插补搜寻法、费氏搜寻法
C语言经典算法-9
稀疏矩阵、多维矩阵转一维矩阵、上三角、下三角、对称矩阵、奇数魔方阵、4N 魔方阵、2(2N+1) 魔方阵
26.约瑟夫问题(Josephus Problem)
说明据说着名犹太历史学家 Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人 开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。
然而Josephus 和他的朋友并不想遵从,Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。
解法约瑟夫问题可用代数分析来求解,将这个问题扩大好了,假设现在您与m个朋友不幸参与了这个游戏,您要如何保护您与您的朋友?只要画两个圆圈就可以让自己与朋友免于死亡游戏,这两个圆圈内圈是排列顺序,而外圈是自杀顺序,如下图所示:
使用程式来求解的话,只要将阵列当作环状来处理就可以了,在阵列中由计数1开始,每找到三个无资料区就填入一个计数,直而计数达41为止,然后将阵列由索引1开始列出,就可以得知每个位置的自杀顺序,这就是约瑟夫排列,41个人而报数3的约琴夫排列如下所示:
14 36 1 38 15 2 24 30 3 16 34 4 25 17 5 40 31 6 18 26 7 37 19 8 35 27 9 20 32 10 41 21 11 28 39 12 22 33 13 29 23
由上可知,最后一个自杀的是在第31个位置,而倒数第二个自杀的要排在第16个位置,之前的人都死光了,所以他们也就不知道约琴夫与他的朋友并没有遵守游戏规则了。
#include <stdio.h>
#include <stdlib.h>
#define N 41
#define M 3 int main(void) { int man[N] = {0}; int count = 1; int i = 0, pos = -1; int alive = 0; while(count <= N) { do { pos = (pos+1) % N; // 环状处理 if(man[pos] == 0) i++; if(i == M) { // 报数为3了 i = 0; break; } } while(1); man[pos] = count; count++; } printf("\n约琴夫排列:"); for(i = 0; i < N; i++) printf("%d ", man[i]); printf("\n\n您想要救多少人?"); scanf("%d", &alive); printf("\nL表示这%d人要放的位置:\n", alive); for(i = 0; i < N; i++) { if(man[i] > alive) printf("D"); else printf("L"); if((i+1) % 5 == 0) printf(" "); } printf("\n"); return 0; }
27.排列组合
说明将一组数字、字母或符号进行排列,以得到不同的组合顺序,例如1 2 3这三个数的排列组合有:1 2 3、1 3 2、2 1 3、2 3 1、3 1 2、3 2 1。
解法可以使用递回将问题切割为较小的单元进行排列组合,例如1 2 3 4的排列可以分为1 [2 3 4]、2 [1 3 4]、3 [1 2 4]、4 [1 2 3]进行排列,这边利用旋转法,先将旋转间隔设为0,将最右边的数字旋转至最左边,并逐步增加旋转的间隔,例如:
1 2 3 4 -> 旋转1 -> 继续将右边2 3 4进行递回处理
2 1 3 4 -> 旋转1 2 变为 2 1-> 继续将右边1 3 4进行递回处理
3 1 2 4 -> 旋转1 2 3变为 3 1 2 -> 继续将右边1 2 4进行递回处理
4 1 2 3 -> 旋转1 2 3 4变为4 1 2 3 -> 继续将右边1 2 3进行递回处理
#include <stdio.h>
#include <stdlib.h>
#define N 4 void perm(int*, int); int main(void) { int num[N+1], i; for(i = 1; i <= N; i++) num[i] = i; perm(num, 1); return 0;
} void perm(int* num, int i) { int j, k, tmp; if(i < N) { for(j = i; j <= N; j++) { tmp = num[j]; // 旋转该区段最右边数字至最左边 for(k = j; k > i; k--) num[k] = num[k-1]; num[i] = tmp; perm(num, i+1); // 还原 for(k = i; k < j; k++) num[k] = num[k+1]; num[j] = tmp; } } else { // 显示此次排列 for(j = 1; j <= N; j++) printf("%d ", num[j]); printf("\n"); }
}
28.格雷码(Gray Code)
说明
Gray Code是一个数列集合,每个数使用二进位来表示,假设使用n位元来表示每个数好了,任两个数之间只有一个位元值不同,例如以下为3位元的Gray Code:
000 001 011 010 110 111 101 100
由定义可以知道,Gray Code的顺序并不是唯一的,例如将上面的数列反过来写,也是一组Gray Code:
100 101 111 110 010 011 001 000
Gray Code是由贝尔实验室的Frank Gray在1940年代提出的,用来在使用PCM(Pusle Code Modulation)方法传送讯号时避免出错,并于1953年三月十七日取得美国专利。
解法
由于Gray Code相邻两数之间只改变一个位元,所以可观 察Gray Code从1变0或从0变1时的位置,假设有4位元的Gray Code如下:
0000 0001 0011 0010 0110 0111 0101 0100
1100 1101 1111 1110 1010 1011 1001 1000
观察奇数项的变化时,我们发现无论它是第几个Gray Code,永远只改变最右边的位元,如果是1就改为0,如果是0就改为1。
观察偶数项的变化时,我们发现所改变的位元,是由右边算来第一个1的左边位元。
以上两个变化规则是固定的,无论位元数为何;所以只要判断位元的位置是奇数还是偶数,就可以决定要改变哪一个位元的值,为了程式撰写方便,将阵列索引 0当作最右边的值,而在列印结果时,是由索引数字大的开始反向列印。
将2位元的Gray Code当作平面座标来看,可以构成一个四边形,您可以发现从任一顶点出发,绕四边形周长绕一圈,所经过的顶点座标就是一组Gray Code,所以您可以得到四组Gray Code。
同样的将3位元的Gray Code当作平面座标来看的话,可以构成一个正立方体,如果您可以从任一顶点出发,将所有的边长走过,并不重复经过顶点的话,所经过的顶点座标顺序之组合也就是一组Gray Code。
#include <stdio.h>
#include <stdlib.h> #define MAXBIT 20
#define TRUE 1
#define CHANGE_BIT(x) x = ((x) == '0' ? '1' : '0')
#define NEXT(x) x = (1 - (x)) int main(void) { char digit[MAXBIT]; int i, bits, odd; printf("输入位元数:"); scanf("%d", &bits); for(i = 0; i < bits; i++) { digit[i] = '0'; printf("0"); } printf("\n"); odd = TRUE; while(1) { if(odd) CHANGE_BIT(digit[0]); else { // 计算第一个1的位置 for(i = 0; i < bits && digit[i] == '0'; i++) ; if(i == bits - 1) // 最后一个Gray Code break; CHANGE_BIT(digit[i+1]); } for(i = bits - 1; i >= 0; i--) printf("%c", digit[i]); printf("\n"); NEXT(odd); } return 0;
}
29.产生可能的集合
说明
给定一组数字或符号,产生所有可能的集合(包括空集合),例如给定1 2 3,则可能的集合为:{}、{1}、{1,2}、{1,2,3}、{1,3}、{2}、{2,3}、{3}。
解法
如果不考虑字典顺序,则有个简单的方法可以产生所有的集合,思考二进位数字加法,并注意1出现的位置,如果每个位置都对应一个数字,则由1所对应的数字所产生的就是一个集合,例如:
Input | Set |
---|---|
000 | {} |
001 | {3} |
010 | {2} |
011 | {2,3} |
100 | {1} |
101 | {1,3} |
110 | {1,2} |
111 | {1,2,3} |
了解这个方法之后,剩下的就是如何产生二进位数?有许多方法可以使用,您可以使用unsigned型别加上&位元运算来产生,这边则是使用阵列搜 寻,首先阵列内容全为0,找第一个1,在还没找到之前将走访过的内容变为0,而第一个找到的0则变为 1,如此重复直到所有的阵列元素都变为1为止,例如:
000 => 100 => 010 => 110 => 001 => 101 => 011 => 111
如果要产生字典顺序,例如若有4个元素,则:
{} => {1} => {1,2} => {1,2,3} => {1,2,3,4} =>
{1,2,4} =>
{1,3} => {1,3,4} =>
{1,4} =>
{2} => {2,3} => {2,3,4} =>
{2,4} =>
{3} => {3,4} =>
{4}
简单的说,如果有n个元素要产生可能的集合,当依序产生集合时,如果最后一个元素是n,而倒数第二个元素是m的话,例如:
{a b c d e n}
则下一个集合就是{a b c d e+1},再依序加入后续的元素。
例如有四个元素,而当产生{1 2 3 4}集合时,则下一个集合就是{1 2 3+1},也就是{1 2 4},由于最后一个元素还是4,所以下一个集合就是{1 2+1},也就是{1 3},接下来再加入后续元素4,也就是{1 3 4},由于又遇到元素4,所以下一个集合是{1 3+1},也就是{1 4}。
实作
C(无字典顺序)
#include <stdio.h>
#include <stdlib.h> #define MAXSIZE 20 int main(void) { char digit[MAXSIZE]; int i, j; int n; printf("输入集合个数:"); scanf("%d", &n); for(i = 0; i < n; i++) digit[i] = '0'; printf("\n{}"); // 空集合 while(1) { // 找第一个0,并将找到前所经过的元素变为0 for(i = 0; i < n && digit[i] == '1'; digit[i] = '0', i++); if(i == n) // 找不到0 break; else // 将第一个找到的0变为1 digit[i] = '1'; // 找第一个1,并记录对应位置 for(i = 0; i < n && digit[i] == '0'; i++); printf("\n{%d", i+1); for(j = i + 1; j < n; j++) if(digit[j] == '1') printf(",%d", j + 1); printf("}"); } printf("\n"); return 0;
}
C(字典顺序)
#include <stdio.h>
#include <stdlib.h> #define MAXSIZE 20 int main(void) { int set[MAXSIZE]; int i, n, position = 0; printf("输入集合个数:"); scanf("%d", &n); printf("\n{}"); set[position] = 1; while(1) { printf("\n{%d", set[0]); // 印第一个数 for(i = 1; i <= position; i++) printf(",%d", set[i]); printf("}"); if(set[position] < n) { // 递增集合个数 set[position+1] = set[position] + 1; position++; } else if(position != 0) { // 如果不是第一个位置 position--; // 倒退 set[position]++; // 下一个集合尾数 } else // 已倒退至第一个位置 break; } printf("\n"); return 0;
}
30.m元素集合的n个元素子集
说明
假设有个集合拥有m个元素,任意的从集合中取出n个元素,则这n个元素所形成的可能子集有那些?
解法
假设有5个元素的集点,取出3个元素的可能子集如下:
{1 2 3}、{1 2 4 }、{1 2 5}、{1 3 4}、{1 3 5}、{1 4 5}、{2 3 4}、{2 3 5}、{2 4 5}、{3 4 5}
这些子集已经使用字典顺序排列,如此才可以观察出一些规则:
如果最右一个元素小于m,则如同码表一样的不断加1
如果右边一位已至最大值,则加1的位置往左移
每次加1的位置往左移后,必须重新调整右边的元素为递减顺序
所以关键点就在于哪一个位置必须进行加1的动作,到底是最右一个位置要加1?还是其它的位置?
在实际撰写程式时,可以使用一个变数positon来记录加1的位置,position的初值设定为n-1,因为我们要使用阵列,而最右边的索引值为最大 的n-1,在position位置的值若小于m就不断加1,如果大于m了,position就减1,也就是往左移一个位置;由于位置左移后,右边的元素会 经过调整,所以我们必须检查最右边的元素是否小于m,如果是,则position调整回n-1,如果不是,则positon维持不变。
实作
#include <stdio.h>
#include <stdlib.h> #define MAX 20 int main(void) { int set[MAX]; int m, n, position; int i; printf("输入集合个数 m:"); scanf("%d", &m); printf("输入取出元素 n:"); scanf("%d", &n); for(i = 0; i < n; i++) set[i] = i + 1; // 显示第一个集合 for(i = 0; i < n; i++) printf("%d ", set[i]); putchar('\n'); position = n - 1; while(1) { if(set[n-1] == m) position--; else position = n - 1; set[position]++; // 调整右边元素 for(i = position + 1; i < n; i++) set[i] = set[i-1] + 1; for(i = 0; i < n; i++) printf("%d ", set[i]); putchar('\n'); if(set[0] >= m - n + 1) break; } return 0;
}
系列好文,点击链接即可跳转
上一篇:
C语言经典算法-4
最大访客数、中序式转后序式(前序式)、后序式的运算、洗扑克牌(乱数排列)、Craps赌博游戏
下一篇:
C语言经典算法-6
数字拆解、得分排行,选择、插入、气泡排序、Shell 排序法 - 改良的插入排序、Shaker 排序法 - 改良的气泡排序