Elasticsearch 索引模板、生命周期策略、节点角色

简介

  • 索引模板可以帮助简化创建和二次配置索引的过程,让我们更高效地管理索引的配置和映射。

  • 索引生命周期策略是一项有意义的功能。它通常用于管理索引和分片的热(hot)、温(warm)和冷(cold)数据,以及定期删除过期的数据,以确保Elasticsearch的健康运行。

  • Elasticsearch集群中,不同节点扮演着不同的角色(热(hot)、温(warm)和冷(cold)主节点),共同构成了强大的搜索和分析引擎。

ELK系列文章: ELK

此文档基于 8.0版本编写。

索引模板 - Template

索引可使用预定义的模板进行创建,这个模板称作Index templates。模板设置包括设置和映射,通过模式匹配的方式使得多个索引重用一个模板。

索引模式

用于匹配创建的索引。

索引设置

settings主要作用于index的一些相关配置信息,如分片数、副本数,tranlog同步条件、refresh等。

官方文档

下面就是把副本数量指定为2,默认副本数量为1。

{"index": {"number_of_replicas": "2"}
}
  • index.codec 默认使用 LZ4 压缩存储的数 压缩,但可以将其设置为使用 DEFLATE 进行更高的压缩比,以较慢的存储字段性能为代价。

  • index.number_of_replicas 每个主分片的副本数。默认值为 1。

  • index.number_of_shards 索引应具有的主分片数。默认值为1 。此设置只能在创建索引时设置。不能在索引上的更改它。

索引映射

mappings主要是一些说明信息,大致又分为_all、_source、prpperties这三部分:

  1. _all:主要指的是AllField字段,我们可以将一个或多个都包含进来,在进行检索时无需指定字段的情况下检索多个字段。设置

  2. _source:主要指的是SourceField字段,Source可以理解为ES除了将数据保存在索引文件中,另外还有一份源数据。_source字段在我们进行检索时相当重要,如果在{“enabled” : false}情况下默认检索只会返回ID, 你需要通过Fields字段去到索引中去取数据,效率不是很高。但是enabled设置为true时,索引会比较大,这时可以通过Compress进行压缩和inclueds、excludes来在字段级别上进行一些限制,自定义哪些字段允许存储。

  3. properties:这是最重要的步骤,主要针对索引结构和字段级别上的一些设置。“_all” : {“enabled” : true}

咱们通常在elasticsearch中 post mapping信息,每重新创建索引便到设置mapping,分片,副本信息。非常繁琐。强烈建议大家通过设置模板方式设置索引信息。设置索引名,通过正则匹配的方式匹配到相应的模板。

直接修改mapping的优先级>索引模板。索引匹配了多个模板,当属性等配置出现不一致的,以order的最大值为准,order默认值为0

创建过程 - Kibana

选择 Stack Management > 数据 > 索引管理 > 索引模板 > 创建模板

配置名称和索引模式

填写名称、和索引模式和开启允许自动创建索引。点击下一步,跳过组件模板。

注意索引模式需要匹配要创建的索引名称。

索引设置

配置副本数量为2,点击下一步到复查模板。最后点击创建模板。

最终索引模式匹配的创建模板,都会套用模板配置。

索引生命周期

索引生命周期可以手动关联模板,也可以通过索引模板自动关联。

创建

选择 Stack Management > 数据 > 索引管理 > 索引生命周期策略 > 点击创建策略。

创建策略,配置热阶段 180天后转换为冷阶段,并把副本数量改为0。再过365天后删除。

冷阶段配置

配置副本分片重定为0,并配置此阶段后删除。

删除阶段

配置冷阶段365天后删除索引。

关联索引模板

在这里插入图片描述

集群角色

node.roles: [ data, master ]
# 配置文件示例

主节点(Master-eligible node

  • 主节点的核心用途:集群层面的管理,例如创建或删除索引、跟踪哪些节点是集群的一部分,以及决定将哪些分片分配给哪些节点。主节点的path.data 用于存储集群元数据信息,不可缺少。

  • 主节点的重要性:拥有稳定的主节点对于集群健康非常重要。

和早期版本不同,节点角色划分后,主节点又被细分为:候选主节点和仅投票主节点。

  • 主节点存储数据:集群中每个索引的索引元数据,集群层面的元数据。

专用候选主节点(Dedicated master-eligible node

如果集群规模大、节点多之后,有必要独立设置专用候选主节点。

专用候选主节点配置:

node.roles: [ master ]

仅投票主节点(Voting-only master-eligible node

用途:仅投票,不会被选为主节点。

硬件配置可以较专用候选主节点低一些。

仅投票主节点配置:

node.roles: [ master, voting_only ]

注意:master 在集群中必不可少。

关于集群主节点配置,要强调说明如下:

  • 高可用性 (HA) 集群需要至少三个符合主节点资格的节点;其中至少两个不是仅投票节点。

  • 即使其中一个节点发生故障,这样的集群也将能够选举一个主节点。

数据节点(Data node

数据节点用途:数据落地存储、数据增、删、改、查、搜索、聚合操作等处理操作。

数据节点硬件配置:CPU 要求高、内存要求高、磁盘要求高。

专属数据节点好处:主节点和数据节点分离,各司其职。

数据节点存储内容:

  • 分片数据。

  • 每个分片对应的元数据。

  • 集群层面的元数据,如:setting 和 索引模板。

拥有专用数据节点的主要好处是主角色和数据角色的分离。

数据节点的配置:

node.roles: [ data ]

用途:运行转换并处理转换 API 请求。这块,咱们之前文章没有涉及。

在 Elastic 多层(tires)冷热集群架构体系下,数据节点又可以细分为:

  • 内容数据节点(Content data node)

  • 热数据节点(Hot data node)

  • 温数据节点(Warm data node)

  • 冷数据节点(Cold data node)

  • 冷冻数据节点(Frozen data node)

内容数据节点

用途:处理写入和查询负载,具有较长的数据保留要求。

建议至少设置一个副本,以保证数据的高可用。

不属于数据流的系统索引或其他索引会自动分配到内容数据节点。

node.roles: [ data_content ]

热数据节点

用途:保存最近、最常访问的时序数据。

推荐使用:SSD 磁盘,至少设置一个副本。

node.roles: [ data_hot ]
****

温数据节点

用途:保存访问频次低且很少更新的时序数据。

node.roles: [ data_warm ]

冷数据节点

用途:保存不经常访问且通常不更新的时序数据。可存储可搜索快照。

node.roles: [ data_cold ]

冷冻数据节点

用途:保存很少访问且从不更新的时序数据。

node.roles: [ data_frozen ]

在冷热集群架构时序数据 ILM 索引生命周期管理的实战演练环节,验证发现:

在配置节点角色时,data_hot、data_warm、data_cold 要和 data_content 要一起配置。且 data_hot、data_warm、data_cold 不要和原有的data 节点一起配置了。

如果仅data_hot 不设置 data_content 会导致集群数据写入后无法落地。

我的理解:data_hot, data_warm, data_cold 是标识性的节点,实际落地存储还得靠 data_content 角色。

数据预处理节点(ingest node

用途:执行由预处理管道组成的预处理任务。

关于啥是数据的预处理?之前有多篇文章解读过:

Elasticsearch 预处理没有奇技淫巧,请先用好这一招!

Elasticsearch的ETL利器——Ingest节点

node.roles: [ ingest ]

仅协调节点(Coordinating only node

用途:类似智能负载均衡器,负责:路由分发请求、聚集搜索或聚合结果。

注意事项:在一个集群中添加太多的仅协调节点会增加整个集群的负担,因为当选的主节点必须等待来自每个节点的集群状态更新的确认。

node.roles: [ ]# 空配置

空即是“色”,不对,这里空即是“仅协调节点”。

远程节点(Remote-eligible node

用途:跨集群检索或跨集群复制。

node.roles: [ remote_cluster_client ]
3.6 机器学习节点(Machine learning node

用途:机器学习,系收费功能。

node.roles: [ ml, remote_cluster_client]
3.7 转换节点(Transform node

用途:运行转换并处理转换 API 请求。这块,咱们之前文章没有涉及。

推荐阅读:

https://www.elastic.co/guide/en/elasticsearch/reference/current/transform-overview.html

node.roles: [ transform, remote_cluster_client ]

角色资源耗费

参考

https://chenzhonzhou.github.io/2021/01/31/elasticsearch-suo-yin-mo-ban-template/

https://cloud.tencent.com/developer/article/2009025

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/286360.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于傅里叶描述子和HSV颜色特征的KNN水果类型识别,Matlab实现

博主简介: 专注、专一于Matlab图像处理学习、交流,matlab图像代码代做/项目合作可以联系(QQ:3249726188) 个人主页:Matlab_ImagePro-CSDN博客 原则:代码均由本人编写完成,非中介,提供…

【双指针】Leetcode 盛最多水的容器

题目解析 11. 盛水最多的容器 木桶效应&#xff0c;寻找一个区间使得这个区间的体积最大 算法讲解 1. 暴力枚举 遍历这个容器&#xff0c;将每一个区间的体积求出来&#xff0c;然后找出最大的 class Solution { public:int maxArea(vector<int>& height){int n…

K8s-网络原理-下篇

引言 本文是《深入剖析 K8s》的学习笔记&#xff0c;相关图片和案例可从https://github.com/WeiXiao-Hyy/k8s_example中获取&#xff0c;欢迎Star! K8s 的网络隔离: NetWorkPolicy K8s 如何考虑容器之间网络的“隔离” -> NetWorkPolicy 以下是一个 NetWorkPolicy 的定义…

微服务day07 -- 搜索引擎 ( 数据聚合 + 自动补全 + 数据同步 + ES集群 )

1.数据聚合 聚合&#xff08;aggregations&#xff09;可以让我们极其方便的实现对数据的统计、分析、运算。例如&#xff1a; 什么品牌的手机最受欢迎&#xff1f; 这些手机的平均价格、最高价格、最低价格&#xff1f; 这些手机每月的销售情况如何&#xff1f; 实现这些…

常用中间件redis,kafka及其测试方法

常用消息中间件及其测试方法 一、中间件的使用场景引入中间件的目的一般有两个&#xff1a;1、提升性能常用的中间件&#xff1a;1) 高速缓存&#xff1a;redis2) 全文检索&#xff1a;ES3) 存日志&#xff1a;ELK架构4) 流量削峰&#xff1a;kafka 2、提升可用性产品架构中高可…

Kubernetes Pod深度解析:构建可靠微服务的秘密武器(上)

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f3c5;个人专栏&#xff1a;《Kubernetes航线图&#xff1a;从船长到K8s掌舵者》 &#x1f3c5; &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 一、引言 1、Kubernetes概述 2、Pod概述 二、Po…

基于SSM框架的酒店预订系统

基于SSM框架的酒店预订系统的设计与实现 摘要 当今世界的互联网信息技术飞速发展&#xff0c;网络化的工作模式已经几乎覆盖到各个工作领域中的业务内&#xff0c;人们的日常生活也渐渐离不开互联网。因此&#xff0c;在当下全国各处的酒店都开始构建起了自己的网络预订系统。…

C++ 简单模拟实现 STL 中的 list 与 queue

目录 一&#xff0c;list 1&#xff0c; list 的节点与迭代器 2&#xff0c;list 的数据结构、一些简单的功能、构造函数 3&#xff0c;list 的对元素操作 4&#xff0c;C 11 的一些功能 5&#xff0c;完整代码&#xff1a; 二&#xff0c;queue 一&#xff0c;list std…

目前国内体验最佳的AI问答助手:kimi.ai

文章目录 简介图片理解长文档解析 简介 kimi.ai是国内初创AI公司月之暗面推出的一款AI助手&#xff0c;终于不再是四字成语拼凑出来的了。这是一个非常存粹的文本分析和对话工具&#xff0c;没有那些东拼西凑花里胡哨的AIGC功能&#xff0c;实测表明&#xff0c;这种聚焦是对的…

『Apisix入门篇』从零到一掌握Apache APISIX:架构解析与实战指南

&#x1f4e3;读完这篇文章里你能收获到&#xff1a; &#x1f310; 深入Apache APISIX架构&#xff1a; 从Nginx到OpenResty&#xff0c;再到etcd&#xff0c;一站式掌握云原生API网关的构建精髓&#xff0c;领略其层次化设计的魅力。 &#x1f50c; 核心组件全解析&#xff…

Ubuntu deb文件 安装 MySQL

更新系统软件依赖 sudo apt update && sudo apt upgrade下载安装包 输入命令查看Ubuntu系统版本 lsb_release -a2. 网站下载对应版本的安装包 下载地址. 解压安装 mkdir /home/mysqlcd /home/mysqltar -xvf mysql-server_8.0.36-1ubuntu20.04_amd64.deb-bundle.tar# …

判断a是否大于b operator.gt(a, b) 判断a是否大于等于b operator.ge(a, b)

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 判断a是否大于b operator.gt(a, b) 判断a是否大于等于b operator.ge(a, b) [太阳]选择题 请问执行以下程序的结果是&#xff1a; import operator print("【执行】2>2") print(2…

hbase启动错误-local host is“master:XXXX“ destination is:master

博主的安装前提&#xff1a; zookeeper安装完成&#xff0c;且启动成功 hdfs高可用安装&#xff0c;yarn高可用安装&#xff0c;且启动成功 报错原因&#xff1a;端口配置不对 解决方案&#xff1a; 输入&#xff1a;hdfs getconf -confKey fs.default.name 然后把相应的…

影视文件数字指纹签名检验系统的用户操作安全大多数

国内网盘服务大规模出现版权问题。 一些个人或团体会通过云存储客户端将主要由电影、电视、音乐组成的文件上传到网盘&#xff0c;然后在圈子里分享。 可供下载。 大量受版权保护的视频音乐就是通过这种特殊的盗版方式传播的&#xff0c;而这种传播方式暂时不受监管。 一些云存…

开发者的瑞士军刀:DevToys

DevToys&#xff1a; 一站式开发者工具箱&#xff0c;打造高效创意编程体验&#xff0c;让代码生活更加得心应手&#xff01;—— 精选真开源&#xff0c;释放新价值。 概览 不知道大家是否在windows系统中使用过PowerToys&#xff1f;这是微软研发的一项免费实用的系统工具套…

iMazing2024功能强大的iPhone和iPad管理工具

iMazing是一款功能强大的iPhone和iPad管理工具&#xff0c;确实可以作为iTunes的替代品进行数据备份。以下是一些关于iMazing的主要特点和功能&#xff1a; 设备备份&#xff1a;iMazing可以备份iOS设备上的所有数据&#xff0c;包括照片、视频、音乐、应用程序等。与iTunes相比…

【元胞自动机】MATLAB界面聚合的元胞自动机模拟完整实现运行

文末有完整代码分享链接 文件介绍 automain 为元胞自动机主函数 choosedirection 选择方向函数&#xff0c;主函数调用 judgedirection 判断位置函数&#xff0c;主函数调用 neighbor 求每个元胞的邻居函数&#xff0c;主函数调用 surfaceness 求表面粗糙度 porosity 求孔隙率…

机器学习作业二之KNN算法

KNN&#xff08;K- Nearest Neighbor&#xff09;法即K最邻近法&#xff0c;最初由 Cover和Hart于1968年提出&#xff0c;是一个理论上比较成熟的方法&#xff0c;也是最简单的机器学习算法之一。该方法的思路非常简单直观&#xff1a;如果一个样本在特征空间中的K个最相似&…

Arduino IDE工程代码多文件编程和中文设置

一、esp8266模块信息 二、中英文切换 点击文件( File )–选择首选项( Preference )—选择语言( Language )—选择中文–点击确定( OK ) 三、多文件编程 在Arduino编程中&#xff0c;将代码分割成多个文件是一种很好的做法&#xff0c;特别是项目变得越来越大和复杂时。这样…

【微服务】Eureka(服务注册,服务发现)

文章目录 1.基本介绍1.学前说明2.当前架构分析1.示意图2.问题分析 3.引出Eureka1.项目架构分析2.上图解读 2.创建单机版的Eureka1.创建 e-commerce-eureka-server-9001 子模块2.检查父子pom.xml1.子 pom.xml2.父 pom.xml 3.pom.xml 引入依赖4.application.yml 配置eureka服务5.…